Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38599633

RESUMO

AIMS: This study explores the biocontrol potential of Pseudomonas putida Z13 against Botrytis cinerea in tomato plants, addressing challenges posed by the pathogen's fungicide resistance. The aims of the study were to investigate the in vitro and in silico biocontrol traits of Z13, identify its plant-colonizing efficacy, evaluate the efficacy of different application strategies against B. cinerea in planta, and assess the capacity of Z13 to trigger induced systemic resistance (ISR) in plants. METHODS AND RESULTS: The in vitro experiments revealed that Z13 inhibits the growth of B. cinerea, produces siderophores, and exhibits swimming and swarming activity. Additionally, the Z13 genome harbors genes that encode compounds triggering ISR, such as pyoverdine and pyrroloquinoline quinone. The in planta experiments demonstrated Z13's efficacy in effectively colonizing the rhizosphere and leaves of tomato plants. Therefore, three application strategies of Z13 were evaluated against B. cinerea: root drenching, foliar spray, and the combination of root drenching and foliar spray. It was demonstrated that the most effective treatment of Z13 against B. cinerea was the combination of root drenching and foliar spray. Transcriptomic analysis showed that Z13 upregulates the expression of the plant defense-related genes PR1 and PIN2 upon B. cinerea inoculation. CONCLUSION: The results of the study demonstrated that Z13 possesses significant biocontrol traits, such as the production of siderophores, resulting in significant plant protection against B. cinerea when applied as a single treatment to the rhizosphere or in combination with leaf spraying. Additionally, it was shown that Z13 root colonization primes plant defenses against the pathogen.


Assuntos
Botrytis , Doenças das Plantas , Pseudomonas putida , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Pseudomonas putida/fisiologia , Pseudomonas putida/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Sideróforos/metabolismo , Raízes de Plantas/microbiologia , Rizosfera , Agentes de Controle Biológico/farmacologia , Folhas de Planta/microbiologia , Resistência à Doença
2.
Lett Appl Microbiol ; 77(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38449374

RESUMO

Botrytis cinerea poses a recurring threat to viticulture, causing significant yield losses each year. The study explored the biocontrol capabilities of commercially used winemaking yeasts as a strategy to manage B. cinerea in grape berries. The winemaking yeast strains-Saccharomyces cerevisiae ES181, Saccharomyces pastorianus KBG6, S. cerevisiae BCS103, Lachancea thermotolerans Omega, and Torulaspora delbrueckii TD291-reduced B. cinerea growth and conidiation in vitro. Furthermore, they demonstrated a decreased disease severity and number of conidia in grape berries. Among these strains, S. cerevisiae BCS103 was the most effective, inducing the expression of the defense-related gene PR4 in berries. Its diffusible compounds and volatile organic compounds also reduced the expression of BcLTF2, a positive regulator of B. cinerea conidiogenesis. The examined winemaking yeast strains, especially S. cerevisiae BCS103, demonstrated effective inhibition of B. cinerea in vitro and in grape berries, influencing key defense genes and reducing BcLTF2 expression, offering potential solutions for disease management in viticulture. The study underscores the promise of commercially available winemaking yeast strains as eco-friendly tools against B. cinerea in viticulture. Leveraging their safety and existing use in winemaking offers a potential avenue for sustainable disease management.


Assuntos
Vitis , Vinho , Saccharomyces cerevisiae/metabolismo , Botrytis/genética , Vinho/análise
3.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38503565

RESUMO

AIMS: This study aimed to assess the impact of rocket (Eruca sativa) extract on Verticillium wilt in eggplants, explore rhizospheric microorganisms for disease biocontrol, and evaluate selected strains' induced systemic resistance (ISR) potential while characterizing their genomic and biosynthetic profiles. METHODS AND RESULTS: Rocket extract application led to a significant reduction in Verticillium wilt symptoms in eggplants compared to controls. Isolated microorganisms from treated soil, including Paraburkholderia oxyphila EP1, Pseudomonas citronellolis EP2, Paraburkholderia eburnea EP3, and P. oxyphila EP4 and EP5, displayed efficacy against Verticillium dahliae, decreasing disease severity and incidence in planta. Notably, strains EP3 and EP4 triggered ISR in eggplants against V. dahliae. Genomic analysis unveiled shared biosynthetic gene clusters, such as ranthipeptide and non-ribosomal peptide synthetase-metallophore types, among the isolated strains. Additionally, metabolomic profiling of EP2 revealed the production of metabolites associated with amino acid metabolism, putative antibiotics, and phytohormones. CONCLUSIONS: The application of rocket extract resulted in a significant reduction in Verticillium wilt symptoms in eggplants, while the isolated microorganisms displayed efficacy against V. dahliae, inducing systemic resistance and revealing shared biosynthetic gene clusters, with metabolomic profiling highlighting potential disease-suppressing metabolites.


Assuntos
Verticillium , Verticillium/metabolismo , Doenças das Plantas/prevenção & controle , Extratos Vegetais/farmacologia , Gossypium , Resistência à Doença
4.
J Appl Microbiol ; 134(3)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36822621

RESUMO

Several studies have described the potential use of volatile organic compounds (VOCs) emitted by soil microorganisms, specifically of the genus Bacillus, as a sustainable solution for disease management in plants. The Bacillus species have been extensively studied as biocontrol agents (BCAs) due to their ability to inhibit pathogens, trigger induced systemic resistance (ISR) in plants, and enhance plant growth. The ability of the Bacillus species to produce long-lasting resting structures, such as endospores, makes them particularly appealing as BCAs. In recent years, there has been a growing body of research on the effects of Bacillus-emitted VOCs on plant pathogen growth and the triggering of ISR. This review aims to highlight recent advances in the understanding of the biological activities of Bacillus-emitted VOCs, identify new subjects for VOCs research, and stimulate interest in the academic and agri-business sectors for developing pre- and post-harvest application methods.


Assuntos
Bacillus , Compostos Orgânicos Voláteis , Humanos , Compostos Orgânicos Voláteis/farmacologia , Plantas , Esporos Bacterianos , Doenças das Plantas
5.
Plants (Basel) ; 11(13)2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35807643

RESUMO

The soil-borne fungus Verticillium dahliae is causing a devastating vascular disease in more than 200 species of dicotyledonous plants. The pathogen attacks susceptible plants through the roots, colonizes the plant vascular system, and causes the death of aerial tissues. In this study, we used Arabidopsis and eggplants to examine the plant protective and immunization effects of autoclaved V. dahliae spores against V. dahliae. We observed that the application of V. dahliae autoclaved spores in eggplants and Arabidopsis resulted in enhanced protection against V. dahliae, since the disease severity and pathogen colonization were lower in the plants treated with V. dahliae autoclaved spores when compared to controls. In addition, upregulation of the defense related genes PR1 and PDF1.2 in the Arabidopsis plants treated with the V. dahliae autoclaved spores was revealed. Furthermore, pathogenicity experiments in the Arabidopsis mutant cerk1, defective in chitin perception, revealed a loss of protection against V. dahliae in the cerk1 treated with the V. dahliae autoclaved spores. The participation of the chitin receptor CERK1 is evident in Arabidopsis immunization against V. dahliae using autoclaved spores of the pathogen.

6.
Plants (Basel) ; 10(5)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068090

RESUMO

Grapevine bunch rot, caused by Botrytis cinerea and Aspergillus carbonarius, causes important economic losses every year in grape production. In the present study, we examined the plant protective activity of the biological control agents, Paenibacillus alvei K165, Blastobotrys sp. FP12 and Arthrobacter sp. FP15 against B. cinerea and A. carbonarius on grapes. The in vitro experiments showed that strain K165 significantly reduced the growth of both fungi, while FP15 restricted the growth of A. carbonarius and FP12 was ineffective. Following the in vitro experiments, we conducted in planta experiments on grape berries. It was shown that K165, FP12 and FP15 reduced A. carbonarius rot severity by 81%, 57% and 37%, respectively, compared to the control, whereas, in the case of B. cinerea, the only protective treatment was that with K165, which reduced rot by 75%. The transcriptomic analysis of the genes encoding the pathogenesis-related proteins PR2, PR3, PR4 and PR5 indicates the activation of multiple defense responses involved in the biocontrol activity of the examined biocontrol agents.

7.
Plants (Basel) ; 9(7)2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32709088

RESUMO

Verticillium dahliae is one of the most destructive soilborne plant pathogens since it has a broad host range and there is no chemical disease management. Therefore, there is a need to unravel the molecular interaction between the pathogen and the host plant. For this purpose, we examined the role of 1-aminocyclopropane-1-carboxylic acid synthases (ACSs) of Arabidopsis thaliana upon V. dahliae infection. We observed that the acs2, acs6, and acs2/6 plants are partially resistant to V. dahliae, since the disease severity of the acs mutants was lower than the wild type (wt) Col-0 plants. Quantitative polymerase chain reaction analysis revealed that acs2, acs6, and acs2/6 plants had lower endophytic levels of V. dahliae than the wt. Therefore, the observed reduction of the disease severity in the acs mutants is rather associated with resistance than tolerance. It was also shown that ACS2 and ACS6 were upregulated upon V. dahliae infection in the root and the above ground tissues of the wt plants. Furthermore, the addition of 1-aminocyclopropane-1-carboxylic acid (ACC) and aminooxyacetic acid (AOA), the competitive inhibitor of ACS, in wt A. thaliana, before or after V. dahliae inoculation, revealed that both substances decreased Verticillium wilt symptoms compared to controls irrespectively of the application time. Therefore, our results suggest that the mechanism underpinning the partial resistance of acs2 and acs6 seem to be ethylene depended rather than ACC related, since the application of ACC in the wt led to decreased disease severity compared to control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...