Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 858(Pt 2): 159862, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36374757

RESUMO

The construction of pavements incorporating reclaimed asphalt pavement (RAP) is taking place around the world, implying the necessity to quantify their net environmental impacts. Life cycle assessment (LCA) is a popular method to analyze the environmental impacts of a product along the whole value chain, providing guidance to practices and technologies from environmental perspectives. However, the LCA research of RAP-modified pavement is seldom performed in Brazil. In addition, as an important source of uncertainties, there is also need of discussion regarding the geographical and technological characteristics in the LCA of pavements. For these motivations, this paper performs a cradle-to-gate LCA to compare the environmental performance of asphalt pavement in Brazil and Switzerland, using the practical rates of RAP use. The functional unit was defined based on the same traffic volume and service life of asphalt pavements, where the mix design and pavement structures follow the standards of the two countries. The results showed that RAP recycling can improve the environmental performance of hot asphalt mixtures in both countries. Binder amount has a high environmental burden and its reduced use by adding RAP has a positive environmental effect. Type of fuel also plays an important role in LCA. In Brazil, it is not recommended to use heavy oils as fuel during the mixing process if other options such as methane gas is available. The results show that the Swiss production of asphalt mixture had lower environmental impact. Nevertheless, a strategic location of material suppliers and mixing plants could lower the transportation distances, improving its environmental performance.


Assuntos
Materiais de Construção , Reciclagem , Reciclagem/métodos , Hidrocarbonetos/química , Brasil
2.
Sci Total Environ ; 842: 156846, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35738370

RESUMO

Noise mitigation is the main advantage of semi-dense asphalt (SDA) pavements compared to traditional pavements such as stone-mastic asphalt (SMA), but noise is not quantitatively considered in traditional life cycle assessment (LCA). This article performs a comprehensive LCA for SMA and SDA including noise considerations. State-of-the-art sound emission and acoustical ageing models were used to determine the road traffic noise. The latest Swiss dose-response curves and current noise exposure data were used to evaluate health impacts due to noise. Additionally, traditional LCA is also included for assessing the greenhouse gas emissions, non-renewable cumulative energy demand and health impacts of non-noise processes. The results show that SDA causes around 70 % higher greenhouse gases and energy demand than SMA, primarily due to its shorter service life. However, the noise impacts in disability adjusted life years (DALYs) are higher by two to three orders of magnitude than non-noise processes, and the use of SDA can reduce 40 % of the total DALYs. It is shown that road traffic noise plays a significant role in the LCA of pavements. The trade-off between greenhouse gas and energy related impacts, on the one hand, and health effects, on the other hand, requires critical consideration by decision makers when promoting low-noise pavements.


Assuntos
Gases de Efeito Estufa , Animais , Estágios do Ciclo de Vida , Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...