Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Gene Ther ; 19(10): 675-83, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22898898

RESUMO

Lung cancer currently causes the majority of cancer-related deaths worldwide and new treatments are in high demand. Gene therapy could be a promising treatment but currently lacks sufficient efficiency for clinical use, primarily due to limited cellular and nuclear DNA delivery. In the present study, we investigated whether it was possible to exploit the endogenous nuclear-shuttling activity by the nuclear factor kappa B (NFκB) system, which is highly prominent in many cancers as well as lung cancer. We observed that insertion of a DNA nuclear-targeting sequence (DTS) recognized by NFκB could improve plasmid nuclear delivery and enhance the therapeutic effect of a validated transcriptionally cancer-targeted suicide gene therapy system. A clear correlation between the number of inserted NFκB-binding sites and the therapeutic effect of the suicide system was observed in both small cell lung cancer (SCLC) and non-SCLC cell lines. The effect was observed to be due to elevated nuclear translocation of the suicide gene-encoding plasmids. The results show that a significant improvement of gene therapeutic efficiency can be obtained by increasing the intracellular trafficking of therapeutic DNA. This is to our knowledge the first time a DTS strategy has been implemented for suicide gene therapy.


Assuntos
Genes Transgênicos Suicidas , Terapia Genética/métodos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , NF-kappa B/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/terapia , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Neoplasias Pulmonares/metabolismo , NF-kappa B/metabolismo , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/metabolismo , Carcinoma de Pequenas Células do Pulmão/terapia , Transfecção
2.
Cancer Gene Ther ; 15(9): 563-75, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18421308

RESUMO

Transcriptionally targeted gene therapy is a promising experimental modality for treatment of systemic malignancies such as small cell lung cancer (SCLC). We have identified the human achaete-scute homolog 1 (hASH1) and enhancer of zeste homolog 2 (EZH2) genes as highly upregulated in SCLC compared to a panel of representative normal tissues. Here, we evaluate the use of regulatory regions from the hASH1- and EZH2-promoter regions alone and in combination for suicide gene therapy of SCLC. Two hASH1-promoter regions comprising 0.3 and 0.7 kb immediately upstream of (and including) the transcription start site were tested. Both constructs induced reporter gene activity (up to sevenfold SV40-promoter activity) in all tested classic (hASH1 positive) SCLC and in two hASH1-negative SCLC cell lines, whereas gene activity was low or absent (<4% of SV40 activity) in one hASH1-negative SCLC and in all control cell lines tested. To evaluate its therapeutic potential, the 0.7 kb hASH1 proximal-promoter region was evaluated for cytotoxicity in a suicide gene assay. The construct induced SCLC cytotoxicity at levels equivalent to those observed with the SV40 promoter, while control cells remained unaffected by the treatment. Analogously, a 1.1 kb EZH2-promoter region was evaluated by reporter and suicide gene assays. The EZH2 promoter potently induced reporter gene activity in SCLC (up to 25-fold of SV40 activity) while moderate reporter activity (up to 12% of SV40 activity), was detected in the control cells. However, in the suicide gene assay both control and SCLC cells demonstrated sensitivity indicating lack of promoter specificity. Finally, we fused the 0.7 kb hASH1 promoter to the EZH2 promoter generating a chimeric hASH1EZH2 regulatory construct. The chimeric promoter demonstrated increased activity in SCLC cells compared to the hASH1 promoter alone while retaining specificity in control cells. The hASH1EZH2 promoter thus constitutes a promising transcriptional regulator for SCLC gene therapy.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Genes Reporter/genética , Genes Transgênicos Suicidas/genética , Regiões Promotoras Genéticas/genética , Carcinoma de Pequenas Células do Pulmão/fisiopatologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Proteína Potenciadora do Homólogo 2 de Zeste , Humanos , Complexo Repressor Polycomb 2 , Receptor Notch1/metabolismo , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...