Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 179: 108815, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38986287

RESUMO

Predicting protein structure is both fascinating and formidable, playing a crucial role in structure-based drug discovery and unraveling diseases with elusive origins. The Critical Assessment of Protein Structure Prediction (CASP) serves as a biannual battleground where global scientists converge to untangle the intricate relationships within amino acid chains. Two primary methods, Template-Based Modeling (TBM) and Template-Free (TF) strategies, dominate protein structure prediction. The trend has shifted towards Template-Free predictions due to their broader sequence coverage with fewer templates. The predictive process can be broadly classified into contact map, binned-distance, and real-valued distance predictions, each with distinctive strengths and limitations manifested through tailored loss functions. We have also introduced revolutionary end-to-end, and all-atom diffusion-based techniques that have transformed protein structure predictions. Recent advancements in deep learning techniques have significantly improved prediction accuracy, although the effectiveness is contingent upon the quality of input features derived from natural bio-physiochemical attributes and Multiple Sequence Alignments (MSA). Hence, the generation of high-quality MSA data holds paramount importance in harnessing informative input features for enhanced prediction outcomes. Remarkable successes have been achieved in protein structure prediction accuracy, however not enough for what structural knowledge was intended to, which implies need for development in some other aspects of the predictions. In this regard, scientists have opened other frontiers for protein structural prediction. The utilization of subsampling in multiple sequence alignment (MSA) and protein language modeling appears to be particularly promising in enhancing the accuracy and efficiency of predictions, ultimately aiding in drug discovery efforts. The exploration of predicting protein complex structure also opens up exciting opportunities to deepen our knowledge of molecular interactions and design therapeutics that are more effective. In this article, we have discussed the vicissitudes that the scientists have gone through to improve prediction accuracy, and examined the effective policies in predicting from different aspects, including the construction of high quality MSA, providing informative input features, and progresses in deep learning approaches. We have also briefly touched upon transitioning from predicting single-chain protein structures to predicting protein complex structures. Our findings point towards promoting open research environments to support the objectives of protein structure prediction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...