Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Oncol ; 30(7): 6609-6622, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37504345

RESUMO

Hepatocellular cancer (HCC) is the most common primary liver cancer and the third leading cause of cancer-related death. Locoregional therapies, including transarterial embolization (TAE: bland embolization), chemoembolization (TACE), and radioembolization, have demonstrated survival benefits when treating patients with unresectable HCC. TAE and TACE occlude the tumor's arterial supply, causing hypoxia and nutritional deprivation and ultimately resulting in tumor necrosis. Embolization blocks the aerobic metabolic pathway. However, tumors, including HCC, use the "Warburg effect" and survive hypoxia from embolization. An adaptation to hypoxia through the Warburg effect, which was first described in 1956, is when the cancer cells switch to glycolysis even in the presence of oxygen. Hence, this is also known as aerobic glycolysis. In this article, the adaptation mechanisms of HCC, including glycolysis, are discussed, and anti-glycolytic treatments, including systemic and locoregional options that have been previously reported or have the potential to be utilized in the treatment of HCC, are reviewed.


Assuntos
Carcinoma Hepatocelular , Embolização Terapêutica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Embolização Terapêutica/métodos , Glicólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...