Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Device ; 11(1): 0110081-110086, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28450979

RESUMO

Natural orifice transluminal endoscopic surgery (NOTES) is a surgical technique to perform "scarless" abdominal operations. Robotic technology has been exploited to improve NOTES and circumvent its limitations. Lack of a multitasking platform is a major limitation. Manual tool exchange can be time consuming and may lead to complications such as bleeding. Previous multifunctional manipulator designs use electric motors. These designs are bulky, slow, and expensive. This paper presents design, prototyping, and testing of a hydraulic robotic tool changing manipulator. The manipulator is small, fast, low-cost, and capable of carrying four different types of laparoscopic instruments.

2.
J Med Device ; 11(1): 0110031-110038, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28070227

RESUMO

Fusion of robotics and minimally invasive surgery (MIS) has created new opportunities to develop diagnostic and therapeutic tools. Surgical robotics is advancing from externally actuated systems to miniature in-vivo robotics. However, with miniaturization of electric-motor-driven surgical robots, there comes a trade-off between the size of the robot and its capability. Slow actuation, low load capacity, sterilization difficulties, leaking electricity and transferring produced heat to tissues, and high cost are among the key limitations of the use of electric motors in in-vivo applications. Fluid power in the form of hydraulics or pneumatics has a long history in driving many industrial devices and could be exploited to circumvent these limitations. High power density and good compatibility with the in-vivo environment are the key advantages of fluid power over electric motors when it comes to in-vivo applications. However, fabrication of hydraulic/pneumatic actuators within the desired size and pressure range required for in-vivo surgical robotic applications poses new challenges. Sealing these types of miniature actuators at operating pressures requires obtaining very fine surface finishes which is difficult and costly. The research described here presents design, fabrication, and testing of a hydraulic/pneumatic double-acting cylinder, a limited-motion vane motor, and a balloon-actuated laparoscopic grasper. These actuators are small, seal-less, easy to fabricate, disposable, and inexpensive, thus ideal for single-use in-vivo applications. To demonstrate the ability of these actuators to drive robotic joints, they were modified and integrated in a robotic arm. The design and testing of this surgical robotic arm are presented to validate the concept of fluid-power actuators for in-vivo applications.

3.
J Med Eng Technol ; 41(3): 223-236, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28122477

RESUMO

Colonoscopy is a diagnostic procedure to detect pre-cancerous polyps and tumours in the colon, and is performed by inserting a long tube equipped with a camera and biopsy tools. Despite the medical benefits, patients undergoing this procedure often complain about the associated pain and discomfort. This discomfort is mostly due to the rough handling of the tube and the creation of loops during the insertion. The overall goal of this work is to minimise the invasiveness of traditional colonoscopy. In pursuit of this goal, this work presents the development of a semi-autonomous colonoscopic robot with minimally invasive locomotion. The proposed robotic approach allows physicians to concentrate mainly on the diagnosis rather than the mechanics of the procedure. In this paper, an innovative locomotion approach for robotic colonoscopy is addressed. Our locomotion approach takes advantage of longitudinal expansion of a latex tube to propel the robot's tip along the colon. This soft and compliant propulsion mechanism, in contrast to minimally invasive mechanisms used in, for example, inchworm-like robots, has shown promising potential. In the preliminary ex vivo experiments, the robot successfully advanced 1.5 metres inside an excised curvilinear porcine colon with average speed of 28 mm/s, and was capable of traversing bends up to 150 degrees. The robot creates less than 6 N of normal force at its tip when it is pressurised with 90 kPa. This maximum force generates pressure of 44.17 mmHg at the tip, which is significantly lower than safe intraluminal human colonic pressure of 80 mmHg. The robot design inherently prevents loop formation in the colon, which is recognised as the main cause of post procedural pain in patients. Overall, the robot has shown great promise in an ex vivo experimental setup. The design of an autonomous control system and in vivo experiments are left as future work.


Assuntos
Colonoscopia/métodos , Robótica/métodos , Desenho de Equipamento , Humanos , Locomoção/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...