Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 274(Pt 1): 133275, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38906350

RESUMO

In this investigation, we present an innovative pH-responsive nanocomposite designed to address challenges associated with using 5-Fluorouracil (5-FU) in cancer therapy. The nanocomposite containing zein (Z), starch (S), and graphitic carbon nitride (g-C3N4) macromolecules is synthesized by a water-in-oil-in-water (W/O/W) double emulsion technique, serving as a carrier for 5-FU. The S/Z hydrogel matrix's entrapment and loading efficiency are greatly improved by adding g-C3N4 nanosheets, reaching noteworthy values of 45.25 % and 86.5 %, respectively, for drug loading efficiency and entrapment efficiency. Characterization through FTIR and XRD validates the successful loading of 5-FU, elucidating the chemical bonding within the nanocomposite and crystalline characteristics. Structural analysis using FESEM, along with DLS and zeta potential measurements, reveals an average nanocomposite size of 193.48 nm, indicating a controlled structure, and a zeta potential of -42.32 mV, signifying a negatively charged surface. Studies on the in vitro release of drugs reveal that 5-FU is delivered more effectively and sustainably in acidic environments than in physiological circumstances. This highlights the fact that the created nanocarrier is pH-sensitive. Modeling release kinetics involves finding the right mathematical conditions representing underlying physicochemical processes. Employing curve-fitting techniques, predominant release mechanisms are identified, and optimal-fitting kinetic models are determined. The Baker kinetic model performed best at pH 7.4, indicating that the leading cause of the drug release was polymer swelling. In contrast, the Higuchi model was most accurate for drug release at pH 5.4, illuminating the diffusion and dissolution mechanisms involved in diffusion. To be more precise, the mechanism of release at pH 7.4 and 5.4 was anomalous transport (dissolution-controlled), according to the Korsmeyer-Peppas mathematical model. The pH-dependent swelling and degradation behavior of S/Z/g-C3N4@5-FU nanocomposite showed higher swelling and faster degradation in acidic environments compared to neutral conditions. Crucially, outcomes from the MTT test affirm the significant cytotoxicity of the 5-FU-loaded nanocomposite against U-87 MG brain cancer cells, while simultaneously indicating non-toxicity towards L929 fibroblast cells. These cumulative findings underscore the potential of the engineered S/Z/g-C3N4@5-FU as a productive and targeted therapeutic approach for cancer cells.

2.
Biosens Bioelectron ; 260: 116425, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38824703

RESUMO

Cancer antigen 15-3 (CA 15-3) is a crucial marker used in the diagnosis and monitoring of breast cancer (BC). The demand for early and precise cancer detection has grown, making the creation of biosensors that are highly sensitive and specific essential. This review paper provides a thorough examination of the progress made in optical and electrochemical biosensors for detecting the cancer biomarker CA 15-3. We focus on explaining their fundamental principles, sensitivity, specificity, and potential for point-of-care applications. The performance attributes of these biosensors are assessed by considering their limits of detection, reaction times, and operational stability, while also making comparisons to conventional methods of CA 15-3 detection. In addition, we explore the incorporation of nanomaterials and innovative transducer components to improve the performance of biosensors. This paper conducts a thorough examination of recent studies to identify the existing obstacles. It also suggests potential areas for future research in this fast progressing field.The paper provides insights into their advancement and utilization to enhance patient outcomes. Both categories of biosensors provide significant promise for the detection of CA 15-3 and offer distinct advantages compared to conventional analytical approaches.


Assuntos
Biomarcadores Tumorais , Técnicas Biossensoriais , Neoplasias da Mama , Técnicas Eletroquímicas , Mucina-1 , Humanos , Neoplasias da Mama/diagnóstico , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Feminino , Técnicas Eletroquímicas/métodos , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/sangue , Mucina-1/análise
3.
Chemosphere ; 359: 142374, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763393

RESUMO

If trace amounts of antibiotics remain in the environment, they can lead to microbial pathogens becoming resistant to antibiotics and putting ecosystem health at risk. For instance, ciprofloxacin (CIP) can be found in surface and ground waters, suggesting that conventional water treatment technologies are ineffective at removing it. Now, a rGO/g-C3N4/SiO2 nanocomposite was synthesized in this study to activate peroxydisulfate (PDS) under UVA-LED irradiation. UVA-LED/rGO-g-C3N4-SiO2/PDS system performance was evaluated using Ciprofloxacin as an antibiotic. Particularly, rGO/g-C3N4/SiO2 showed superior catalytic activity for PDS activation to remove CIP. Operational variables, reactive species determination, and mechanisms were investigated. 0.85 mM PDS and 0.3 g/L rGO/g-C3N4/SiO2 eliminated 99.63% of CIP in 35 min and mineralized 59.78% in 100 min at pH = 6.18. By scavenging free radicals, bicarbonate ions inhibit CIP degradation. According to the trapping experiments, superoxide (O2•-) was the main active species rather than sulfate (SO4•-) and hydroxyl radicals (•OH). RGO/g-C3N4/SiO2 showed an excellent recyclable capability of up to six cycles. The UVA-LED/rGO-g-C3N4-SiO2/PDS system was also tested under real conditions. The system efficiency was reasonable. By calculating the synergistic factor (SF), this work highlights the benefit of combining composite, UVA-LED, and PDS. UVA-LED/rGO-g-C3N4-SiO2/PDS had also been predicted to be an eco-friendly process based on the results of the ECOSAR program. Consequently, this study provides a novel and durable nanocomposite with supreme thermal stability that effectively mitigates environmental contamination by eliminating antibiotics from wastewater.


Assuntos
Ciprofloxacina , Grafite , Nanocompostos , Dióxido de Silício , Sulfatos , Raios Ultravioleta , Poluentes Químicos da Água , Purificação da Água , Dióxido de Silício/química , Nanocompostos/química , Ciprofloxacina/química , Poluentes Químicos da Água/química , Grafite/química , Catálise , Sulfatos/química , Purificação da Água/métodos , Antibacterianos/química
4.
Arch Pharm (Weinheim) ; : e202400001, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747690

RESUMO

Various wound dressings have been developed so far for wound healing, but most of them are ineffective in properly reestablishing the skin's structure, which increases infection risks and dehydration. Electrospun membranes are particularly interesting for wound dressing applications because they mimic the extracellular matrix of healthy skin. In this study, a potential wound healing platform capable of inducing synergistic antibacterial and antioxidation activities was developed by incorporating bio-active rosmarinic acid-hydroxyapatite hybrid (HAP-RA) with different contents (0.5, 1, and 1.5 wt.%) into the electrospun polyamide 6 (PA6) nanofibers. Then, polyethylene glycol (PEG) was introduced to the nanofibrous composite to improve the biocompatibility and biodegradability of the dressing. The results indicated that the hydrophilicity, water uptake, biodegradability, and mechanical properties of the obtained PA6/PEG/HAP-RA nanofibrous composite enhanced at 1 wt.% of HAP-RA. The nanofibrous composite had excellent antibacterial activity. The antioxidation potential of the samples was assessed in vitro. The MTT assay performed on the L929 cell line confirmed the positive effects of the nanofibrous scaffold on cell viability and proliferation. According to the results, the PA6/PEG/HAP-RA nanofibrous composite showed the desirable physiochemical and biological properties besides antibacterial and antioxidative capabilities, making it a promising candidate for further studies in wound healing applications.

6.
Int J Biol Macromol ; 265(Pt 1): 130901, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490383

RESUMO

This study introduces a starch/PVA/g-C3N4 nanocarrier hydrogel for pH-sensitive DOX delivery in breast cancer. DOX was loaded into the nanocarrier with 44.75 % loading efficiency and 88 % Entrapment Efficiency. The release of DOX from the starch/PVA/g-C3N4 hydrogel was pH-sensitive: DOX was released faster in the acidic environment pertinent to cancer tumors (with a pH level of 5.4) than in the surrounding regular tissue environment carrying a more neutral environment (pH 7.4). The release kinetics analysis, encompassing zero-order, first-order, Higuchi, and Korsmeyer-Peppas models, revealed significant fitting with the Higuchi model at both pH 5.4 (R2 = 0.99, K = 9.89) and pH 7.4 (R2 = 0.99, K = 5.70) levels. Finally, we found that hydrogel was less damaging to healthy cells and more specific to apoptotic cells than the drug's free form. The starch/PVA/g-C3N4 hydrogel had low toxicity for both normal cells and breast cancer cells, whereas DOX loaded into the starch/PVA/g-C3N4 hydrogel had higher toxicity for cancer cells than the DOX-only control samples, and led to specific high apoptosis for cancer cells. The study suggests that DOX can be loaded into a starch/PVA/g-C3N4 hydrogel to improve the specificity of the drug's release in cancer tumors or in vitro breast cancer cells.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Hidrogéis/uso terapêutico , Amido/uso terapêutico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Concentração de Íons de Hidrogênio , Portadores de Fármacos/uso terapêutico
7.
J Biomed Mater Res B Appl Biomater ; 112(1): e35370, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38247254

RESUMO

Hyaluronic acid (HA) and chitosan (CS), as natural biomaterials, display excellent biocompatibility and stimulate the growth and proliferation of fibroblasts. Furthermore, nylon 6 (N6) is a low-cost polymer with good compatibility with human tissues and high mechanical stability. In this study, HA and CS were applied to modify N6 nanofibrous mat (N6/HA/CS) for potential wound dressing. N6/HA/CS nanofibrous composite mats were developed using a simple one-step electrospinning technique at different CS concentrations of 1, 2, and 3 wt%. The results demonstrated that incorporating HA and CS into N6 resulted in increased hydrophilicity, as well as favorable physical and mechanical properties. In addition, the minimum inhibitory concentration and (MIC) optical density techniques were used to determine the antibacterial properties of N6/HA/CS nanofibrous composite mats, and the results demonstrated that the composites could markedly inhibit the growth of Gram-positive bacteria Staphylococcus aureus and Gram-negative bacteria Escherichia coli. Because of its superior mechanical properties, substantial antimicrobial effects, and hydrophilic surface, N6/HA/CS at 2 wt% of CS (N6/HA/CS2) was chosen as the most suitable nanofibrous mat. The swelling, porosity, gel content, and in vitro degradation studies imply that N6/HA/CS2 nanofibrous composite mat has proper moisture retention and biodegradability. Furthermore, the N6/HA/CS2 nanofibrous composite mat was discovered to be nontoxic to L929 fibroblast cells and to even improve cell proliferation. Based on the findings, this research offers a simple and rapid method for creating material that could be utilized as prospective wound dressings in clinical environments.


Assuntos
Caprolactama/análogos & derivados , Quitosana , Nanofibras , Humanos , Quitosana/farmacologia , Ácido Hialurônico/farmacologia , Estudos Prospectivos , Bandagens , Antibacterianos/farmacologia , Escherichia coli , Polímeros
8.
Int J Biol Macromol ; 258(Pt 2): 128736, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38101677

RESUMO

Reducing the side effects of cancer treatment methods is an important issue. The loading efficiency and sustained release of 5-Fluorouracil (5-FU) have been significantly improved by creating a new method. A nanocarrier with pH sensitivity has been developed through the w/o/w emulsification method. It is loaded with 5-FU and comprises of chitosan (CS), hydroxyapatite (HAp), and graphitic carbon nitride (g-C3N4). g-C3N4 nanosheets were incorporated in CS/HAp hydrogel to improve the entrapment and loading efficiency. Drug loading efficiency and entrapment efficiency reached 48 % and 87 %, respectively, and the FTIR and XRD tests verified evidence of the formation of chemical bonds among the drug and nanocarrier. Structural analysis was done using FE-SEM. DLS and zeta potential were employed to obtain average size distribution and surface charge. The release profile of 5-FU in various conditions shows the nanoparticles' pH dependence, and the nanocomposite's controlled release is consistent with the Korsmeyer-Peppas kinetic model. Cell apoptosis and cytotoxicity were evaluated in vitro using flow cytometry and MTT analysis. The biocompatibility of CS/HAp/g-C3N4 against MCF-7 cells was shown by the MTT method and confirmed by flow cytometry. CS/HAp/g-C3N4@5-FU led to the highest apoptosis rate in MCF-7 cells, indicating the nanocarrier's efficiency in killing cancer cells. These data indicate that the designed CS/HAp/g-C3N4@5-FU can be a potential drug for treating cancer cells.


Assuntos
Quitosana , Grafite , Nanocompostos , Compostos de Nitrogênio , Humanos , Quitosana/química , Hidrogéis , Fluoruracila/química , Portadores de Fármacos/química , Nanocompostos/química , Hidroxiapatitas , Liberação Controlada de Fármacos
9.
Int J Biol Macromol ; 253(Pt 4): 127091, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37758113

RESUMO

Brain cancer is the major reason of cancer-relevant deaths every year, as it is the most challenging cancer to treat and drug delivery. Quercetin (QUR), as a flavonoid substance found in plants and fruits, has good anticancer and medicinal effects on brain tumors, but its low stability and bioavailability as well as the blood-brain barrier (BBB), prevent it from reaching brain tumors. This research has introduced a nanocomposite made of biocompatible polymers, chitosan, and carboxymethyl cellulose. This co- biopolymer's mechanical and chemical properties and drug-loading capacity have been improved by adding zinc oxide nanoparticles (ZnO NPs). In addition, graphene quantum dots (GQDs) were used to improve the chemical properties as well as the ability to penetrate the BBB. The CS/CMC/GQDs/ZnO@QUR nanocomposites have nanoneedle structures with an average size of 219.38 ± 5.21 nm and a zeta potential of -53 mV. The morphology, chemical bonds, and crystallinity of the nanocomposite were examined by FE-SEM, FTIR, and XRD analyses, respectively. By examining the release of QUR, it became apparent that the half-drug release takes about 72 h, which has a much more controlled release than other QUR carriers. Further, the MTT test on U-87 MG and L929 cell lines suggested that this nanocomposite has good anticancer properties and low cytotoxicity compared to the free QUR.


Assuntos
Neoplasias Encefálicas , Quitosana , Grafite , Nanocompostos , Nanopartículas , Pontos Quânticos , Óxido de Zinco , Humanos , Hidrogéis/química , Pontos Quânticos/química , Óxido de Zinco/química , Quitosana/química , Quercetina/farmacologia , Quercetina/química , Carboximetilcelulose Sódica/química , Grafite/química , Nanopartículas/química , Nanocompostos/química , Concentração de Íons de Hidrogênio
10.
Int J Biol Macromol ; 251: 126280, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37591420

RESUMO

Curcumin (CUR) is among the most natural and effective antitumor drugs for cancer treatment. These drugs have low solubility and short half-lives that reduce their effectiveness in drug release systems. Herein, a hydrogel nanocarrier containing chitosan (CS), alumina (γ-Al2O3), and carbon quantum dots (CQDs) was prepared by the water-in-oil-in-water (W/O/W) double nanoemulsion method. DLS revealed a nanocarrier size of 227 nm, with a zeta potential of -37.8 mV, which corroborates its stability. FE-SEM showed its quasi-spherical shape, FT-IR and XRD confirmed the presence of all the components in the nanocomposite and gave information about the intermolecular interactions between them and the crystalline nature of the nanocarrier, respectively. The drug loading (48 %) and entrapment efficiency (86 %) were higher than those reported previously for other CUR nanocarriers. The drug release profile revealed a controlled and stable release, and a pH-sensitive behavior, with faster CUR release in an acid environment. The breast cancer cell line was examined by cytotoxicity and cell apoptosis analyses. The results showed that the slow release over time and the programmed cell death were due to interactions between CUR and the nanocarrier. Considering the results obtained herein, CS/γAl2O3/CQDs/CUR can be considered as a promising new nanosystem for tumor treatment.

11.
Int J Biol Macromol ; 250: 125897, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37481179

RESUMO

In this work, chitosan (CS), Starch (S), and Molybdenum Disulfide (MoS2) were combined to create a nanocarrier that was utilized to treat breast cancer using the MCF-7 cell line. To analyze the features of the nanocarrier, Fourier-transform infrared spectroscopy (FTIR) and X-Ray diffraction (XRD) tests were performed, respectively, to discover physical interactions and chemical bonding. Field emission scanning electron microscopy (FE-SEM), Dynamic light scattering (DLS), and zeta potential analyses were performed and reported to determine the structural characteristics and morphology of nanoparticles, size distribution, and surface charge of nanocarriers, respectively. The average size of the nanocomposite was measured at around 279 nm, and the surface charge of the nanocarrier was determined to be +86.31 mV. The entrapment and drug loading efficiency of nanocarriers were 87.25 % and 46.5 %, respectively, which is an acceptable value. The kinetics and release mode of the drug were investigated, and it was found that the synthesized nanocarrier was sensitive to pH and that its release was stable. The amount of the nanocarriers' toxicity and cell death were evaluated using MTT tests and flow cytometry, respectively. In the present study, the nanocarrier was wholly nontoxic and had anticancer properties against the MCF-7 cell line. This nanocarrier is very important due to its non-toxicity and sensitivity to pH and can be used in drug delivery and medical applications.


Assuntos
Neoplasias da Mama , Quitosana , Curcumina , Nanocompostos , Nanopartículas , Humanos , Feminino , Curcumina/química , Quitosana/química , Neoplasias da Mama/tratamento farmacológico , Amido , Molibdênio , Nanopartículas/química , Nanocompostos/química , Concentração de Íons de Hidrogênio , Liberação Controlada de Fármacos , Portadores de Fármacos/química , Espectroscopia de Infravermelho com Transformada de Fourier
12.
Int J Biol Macromol ; 249: 125788, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37437675

RESUMO

Curcumin, a natural compound with promising anti-cancerous features, suffers from a number of shortcomings such as low chemical stability, bioavailability, and solubility, which impedes its application as an alternative for conventional cancer therapy. In this study, curcumin comprising Fe2O3/Chitosan/CQDs was fabricated through double emulsion method (W/O/W) for the first time to exploit its anticancer features while alleviating its limitation, making this nanocomposite promising in targeted drug delivery. Chitosan, a hydrophilic biopolymer, has incorporated to constitute an adhesive pH-sensitive matrix that can trap the hydrophobic drug resulting in controlled drug release in cancerous environment. Carbon quantum dots render luminescence and water solubility properties, which is favorable for tracing drug release and bio imaging along with enhancement of biocompatibility. Fe2O3 can improve chemical stability and bioavailability in addition to anti-cancerous property. XRD and FTIR analysis confirmed the physical interaction between the drug and fabricated nano composite in addition to chemical bonding between the prepared nano composite. Matrix and spherical structure of the formed drug is corroborated by FESEM analysis. DLS analysis' results determine the mean size of the nano composite at about 227.2 nm and zeta potential result is indicative of perfect stability of the fabricated drug. Various kinetic models for drug release were fitted to experimental data in order to investigate the drug release in which Korsmeyer-Peppas' model was the predominant release system in cancerous environment. In vitro studies through flow cytometry and MTT assay exerted noticeable cytotoxicity effect on MCF-7 cell lines. It can be deduced from these results that curcumin encapsulated with CS/CQDs/Fe2O3 nanocomposites is an excellent alternative for targeted drug delivery.


Assuntos
Neoplasias da Mama , Quitosana , Curcumina , Nanocompostos , Pontos Quânticos , Humanos , Feminino , Quitosana/química , Curcumina/química , Neoplasias da Mama/tratamento farmacológico , Portadores de Fármacos/química , Carbono , Liberação Controlada de Fármacos , Nanocompostos/química
13.
Int J Pharm ; 642: 123207, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37419431

RESUMO

Endowing wound dressings with drug delivery capability is a suitable strategy to transfer medicinal compounds locally to damaged skin layers. These dressings are especially useful for accelerating the healing rate in the cases of long-term treatment, and adding more functionalities to the platform. In this study, a wound dressing composed of polyamide 6, hyaluronic acid, and curcumin-loaded halloysite nanotubes (PA6/HA/HNT@Cur) was designed and fabricated for wound healing applications. The physicochemical properties of this platform were investigated through Fourier-transform infrared spectroscopy and field-emission scanning electron microscopy. Moreover, wettability, tensile strength, swelling, and in vitro degradation were assessed. The HNT@Cur was incorporated in the fibers in three concentrations and 1 wt% was found as the optimum concentration yielding desirable structural and mechanical properties. The loading efficiency of Cur on HNT was calculated to be 43 ± 1.8%, and the release profiles and kinetics of nanocomposite were investigated at physiological and acidic pH. In vitro antibacterial and antioxidation studies showed that the PA6/HA/HNT@Cur mat had strong antibacterial and antioxidation activities against gram-positive and -negative pathogens and reactive oxygen species, respectively. Desirable cell compatibility of the mat was found through MTT assay against L292 cells up to 72 h. Finally, the efficacy of the designed wound dressing was evaluated in vivo; after 14 days, the results indicated that the wound size treated with the nanocomposite mat significantly decreased compared to the control sample. This study proposed a swift and straightforward method for developing materials that might be utilized as wound dressings in clinical settings.


Assuntos
Curcumina , Nanofibras , Nanotubos , Curcumina/farmacologia , Curcumina/química , Argila/química , Antioxidantes/farmacologia , Nanofibras/química , Antibacterianos/farmacologia , Antibacterianos/química , Nanotubos/química , Cicatrização
14.
Int J Biol Macromol ; 243: 125168, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37270138

RESUMO

The field of nanotechnology has introduced novel prospects for drug delivery systems, which have the potential to supplant conventional chemotherapy with reduced adverse effects. Despite being a promising porous material, ZIF-8, a metal-organic framework, tends to agglomerate in water, which limits its applicability. In order to resolve this problem, we added ZIF-8 to hydrogels consisting of gelatin and carboxymethylcellulose. This improved their mechanical strength and stability while avoiding aggregation. We utilized double emulsions with the hydrogels' biological macromolecules to construct drug carriers with enhanced control over drug release. The nanocarriers were subjected to various analytical techniques for characterization, such as Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), zeta potential, and dynamic light scattering (DLS). The findings of our study revealed that the mean size of the produced nanocarriers were 250 nm, and their zeta potential was -40.1 mV, which suggests favorable stability. The synthesized nanocarriers were found to exhibit cytotoxicity towards cancer cells, as evidenced by the results of MTT assays and flow cytometry tests. The cell viability percentage was determined to be 55 % for the prepared nanomedicine versus 70 % for the free drug. In summary, our study illustrates that the integration of ZIF-8 into hydrogels produces drug delivery systems with improved characteristics. Furthermore, the prepared nanocarriers exhibit potential for future investigation and advancement.


Assuntos
Antineoplásicos , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Carboximetilcelulose Sódica/química , Gelatina , Emulsões , Hidrogéis , Antineoplásicos/química , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos
15.
Eur J Med Chem ; 258: 115547, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37327678

RESUMO

Nowadays, with the advent of cutting-edge technologies in the field of biotechnology, some highly advanced medical methods are introduced to treat cancers more efficiently. In the chemotherapy processes, anti-cancer drugs can be encapsulated in a stimuli-responsive coating which is capable of being functionalized by diverse ligands to increase the biocompatibility and control drug release behavior in a targeted drug delivery system. Nanoparticles (NPs) are playing an important role as nanocarriers in chemotherapy procedures, recently, numerous novel drug delivery systems have been studied which employed diverse types of NPs with remarkable structural features like porous nanocarriers with active and extended surface areas to enhance the drug loading and delivery efficacy. In this study, Daunorubicin (DAU) as an effective anti-cancer drug for treating various cancers introduced, and its application for novel drug delivery systems either as a single chemotherapy agent or co-delivery alongside other drugs with diverse NPs has been reviewed.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Daunorrubicina/química , Antineoplásicos/química , Nanopartículas/química , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Portadores de Fármacos
16.
Int J Biol Macromol ; 242(Pt 1): 124785, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37169052

RESUMO

Curcumin (Cur) is a polyphenolic hydrophobic molecule with several biological uses, including cancer therapy. However, its widespread use in cancer treatment faces limitations due to its low solubility in acidic and neutral conditions, rapid removal from the circulatory system, and poor bioavailability. In order to overcome these challenges, a biocompatible and pH-sensitive carrier nanoplatform was designed for the specific delivery of curcumin to breast cancer cells. This nanocomposite containing polyacrylic acid (PAA), starch, and titanium dioxide (TiO2) was synthesized with a specific morphology through the water-in-oil-in-water green emulsification strategy. The nanocomposite structure was confirmed by Fourier transform infrared (FT-IR), X-ray diffraction (XRD), dynamic light scattering (DLS), zeta potential, and field-emission scanning electrom microscopy (FE-SEM) imaging tests. The mean particle size of 151 nm for the PAA-Starch-TiO2 nanocomposite ensures specific entry into cancer cells and minimal damage to healthy cells. Loading efficiency (LE) and encapsulation efficiency (EE) for curcumin obtained 49.50 % and 87.25 %, which are desirable for a carrier nanoplatform. Compared to the physiological medium, the in-vitro release of curcumin was higher in the acidic conditions in all time intervals, which indicates the possibility of targeted drug release from the PAA-Starch-TiO2 nanocomposite around the tumor tissue. Furthermore, for better understanding of the release mechanism, the cumulative release data in both media were fitted with common mathematical kinetic models. Cytotoxicity tests against the MCF-7 cell line were performed using in vitro MTT and flow cytometry tests. The results showed that the PAA-Starch-TiO2 carrying Cur was more effective through increasing the bioavailability and controlled release of the drug compared to the free Cur. Also, the death of cancer cells in the presence of this nanocomposite compared to free Cur occurred mainly through the induction of apoptosis, which indicates the programmed death of cancer cells and the high efficiency of the designed nanocarrier.


Assuntos
Neoplasias da Mama , Curcumina , Nanocompostos , Nanopartículas , Humanos , Feminino , Curcumina/química , Amido , Espectroscopia de Infravermelho com Transformada de Fourier , Neoplasias da Mama/tratamento farmacológico , Células MCF-7 , Nanocompostos/química , Água , Portadores de Fármacos/química , Nanopartículas/química
17.
Int J Biol Macromol ; 242(Pt 3): 125134, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37257532

RESUMO

A novel pH-sensitive nanocarrier containing chitosan (CS), polyacrylic acid (PAA), and graphitic carbon nitride (g-C3N4) was designed via water/oil/water (W/O/W) emulsification to administer curcumin (CUR) drug. g-C3N4 nanosheets with a high surface area and porous structure were produced via simple one-step pyrolysis process using thiourea as precursor, and incorporated into CS/PAA hydrogel. X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR) were used to assess the crystalline structure of the nanocarrier and the interactions between its components, respectively. Scanning electron microscopy (SEM) images revealed a spherical structure and confirmed the g-C3N4 impregnation into the CS/PAA matrix. Zeta potential and dynamic light scattering (DLS) provided information about the surface charge and average size distribution. High CUR loading and entrapment efficiencies were obtained, which were further improved upon addition of g-C3N4. The release kinetics of drug-loaded CS/PAA/g-C3N4 nanocomposites were investigated at pH = 5.4 and pH = 7.4, and the results showed an excellent controlled pH-sensitive release profile. Cell apoptosis and in vitro cytotoxicity were investigated using flow cytometry and MTT analyses. CS/PAA/g-C3N4/CUR resulted in the highest rate of apoptosis in MCF-7 breast cancer cells, demonstrating the excellent nanocomposite efficacy in eliminating cancerous cells. CS/PAA hydrogel coated with g-C3N4 shows great potential for pH-sensitive controlled drug release.


Assuntos
Neoplasias da Mama , Quitosana , Curcumina , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Curcumina/farmacologia , Curcumina/química , Quitosana/química , Células MCF-7 , Espectroscopia de Infravermelho com Transformada de Fourier , Hidrogéis , Concentração de Íons de Hidrogênio
18.
Int J Biol Macromol ; 242(Pt 3): 124986, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37230449

RESUMO

Curcumin (CUR) is among the most appropriate and natural-based anticancer drugs that can be applied effectively treat different classes of cancers. However, CUR suffers from a low half-life and stability in the body, which has restricted the efficacy of its delivery applications. This study is dedicated to introducing the pH-sensitive nanocomposite of chitosan (CS)/gelatin (GE)/carbon quantum dots (CQDs) as an applicable nanocarrier for enhancing CUR half-life and its delivery restrictions. The CS/GE hydrogel was synthesized by the physical crosslinking method, which improves the biocompatibility of this hydrogel. Moreover, the water-in-oil-in-water (W/O/W) double emulsion approach is involved in fabricating the drug-loaded CS/GE/CQDs@CUR nanocomposite. Afterward, drug encapsulation (EE) and loading efficiencies (LE) have been determined. Furthermore, FTIR and XRD assessments were performed to confirm the CUR incorporation into the prepared nanocarrier and crystalline features of the nanoparticles. Then, by employing Zeta potential and dynamic light scattering (DLS) analysis, the size distribution and stability of the drug-loaded nanocomposites have been assessed, which indicated monodisperse and stable nanoparticles. Furthermore, field emission scanning electron microscopy (FE-SEM) was utilized that confirmed the homogeneous distribution of the nanoparticles with smooth and quite spherical structures. In vitro drug release pattern was studied and the kinetic analysis was performed using a curve fitting technique to determine the governing release mechanism at both acidic pH and physiological conditions. The obtained outcomes from release data revealed a controlled release behavior with a 22-hour half-life, while the EE% and EL% were acquired at 46.75 % and 87.5 %, respectively. In addition, the MTT assay has been carried out on U-87 MG cell lines to evaluate the cytotoxicity of the nanocomposite. The findings showed that the fabricated nanocomposite of CS/GE/CQDs can be assumed as a biocompatible CUR nanocarrier, while the drug-loaded nanocomposite of CS/GE/CQDs@CUR showed enhanced cytotoxicity compared to the pure CUR. Based on the obtained results, this study suggests the CS/GE/CQDs nanocomposite as a biocompatible and potential nanocarrier for ameliorating CUR delivery restrictions to treat brain cancers.


Assuntos
Neoplasias Encefálicas , Quitosana , Curcumina , Nanocompostos , Pontos Quânticos , Humanos , Curcumina/farmacologia , Curcumina/química , Quitosana/química , Gelatina , Carbono , Cinética , Nanocompostos/química , Água
19.
Int Immunopharmacol ; 117: 109960, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37012865

RESUMO

Acute lymphoblastic leukemia (ALL) is one of the most prevalent cancers in children and microRNA-128 is amongst the most useful biomarkers not only for diagnosis of ALL, but also for discriminating ALL from acute myeloid leukemia (AML). In this study, a novel electrochemical nanobiosensor based on reduced graphene oxide (RGO) and gold nanoparticles (AuNPs) has been fabricated to detect miRNA-128. Cyclic Voltametery (CV), Square Wave Voltametery (SWV) and Electrochemical Impedance Spectroscopy (EIS) have been applied to characterize the nanobiosensor. Hexacyanoferrate as a label-free and methylene blue as a labeling material were used in the design of the nanobiosensors. It was found that the modified electrode has excellent selectivity and sensitivity to miR-128, with a limit of detection of 0.08761 fM in label-free and 0.00956 fM in labeling assay. Additionally, the examination of real serum samples of ALL and AML patients and control cases confirms that the designed nanobiosensor has the potential to detect and discriminate these two cancers and the control samples.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , MicroRNAs , Criança , Humanos , Ouro/química , Técnicas Eletroquímicas/métodos , Limite de Detecção , Nanopartículas Metálicas/química , Técnicas Biossensoriais/métodos
20.
Int J Biol Macromol ; 240: 124345, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37054860

RESUMO

Cancer, as one of the most challenging diseases of the last century, has a significant number of patients and deaths every year. Various strategies have been explored for the treatment of cancer. Chemotherapy is one of the methods of treating cancer. Doxorubicin is one of the compounds used in chemotherapy to kill cancer cells. Due to their unique properties and low toxicity, metal oxide nanoparticles are effective in combination therapy and increase the effectiveness of anti-cancer compounds. The limited in vivo circulatory period, poor solubility, and inadequate penetration of doxorubicin (DOX) restrict its use in cancer treatment, notwithstanding its attractive characteristics. It is possible to circumvent some of the difficulties in cancer therapy by using green synthesized pH-responsive nanocomposite consisting of polyvinylpyrrolidone (PVP), titanium dioxide (TiO2) modified with agarose (Ag) macromolecules. TiO2 incorporation into the PVP-Ag nanocomposite resulted in limited increased loading and encapsulation efficiencies from 41 % to 47 % and 84 % to 88.5 %, respectively. DOX diffusion among normal cells is prevented by the PVP-Ag-TiO2 nanocarrier at pH = 7.4, though the acidic intracellular microenvironments activate the PVP-Ag-TiO2 nanocarrier at pH = 5.4. Characterization of the nanocarrier was performed using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectrophotometry, field emission scanning electron microscopy (FE-SEM), dynamic light scattering (DLS), and zeta potential. The average particle size and the zeta potential of the particles showed values of 349.8 nm and +57 mV, respectively. In vitro release after 96 h showed a release rate of 92 % at pH 7.4 and a release rate of 96 % at pH 5.4. Meanwhile, the initial release after 24 h was 42 % for pH 7.4 and 76 % for pH 5.4. As shown by an MTT analysis on MCF-7 cells, the toxicity of DOX-loaded PVP-Ag-TiO2 nanocomposite was substantially greater than that of unbound DOX and PVP-Ag-TiO2. After integrating TiO2 nanomaterials into the PVP-Ag-DOX nanocarrier, flow cytometry data showed a greater stimulation of cell death. These data indicate that the DOX-loaded nanocomposite is a suitable alternative for drug delivery systems.


Assuntos
Antineoplásicos , Nanopartículas Metálicas , Nanocompostos , Humanos , Povidona/química , Sefarose , Hidrogéis , Antineoplásicos/química , Doxorrubicina/química , Nanocompostos/química , Concentração de Íons de Hidrogênio , Liberação Controlada de Fármacos , Portadores de Fármacos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...