Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
ACS Appl Mater Interfaces ; 16(10): 12672-12685, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38421719

RESUMO

The incorporation of superhydrophobic properties into metal organic framework (MOF) materials is highly desirable to enhance their hydrolytic stability, gas capture selectivity in the presence of humidity and efficiency in oil-water separations, among others. The existing strategies for inducing superhydrophobicity into MOFs have several weaknesses, such as increased cost, utilization of toxic reagents and solvents, applicability for limited MOFs, etc. Here, we report the simplest, most eco-friendly, and cost-effective process to impart superhydrophobicity to MOFs, involving a rapid (90 min) treatment of MOF materials with solutions of sodium oleate, a main component of soap. The method can be applied to both hydrolytically stable and unstable MOFs, with the porosity of modified MOFs approaching, in most cases, that of the pristine materials. Interestingly, this approach was used to isolate superhydrophobic magnetic MOF composites, and one of these materials formed stable liquid marbles, whose motion could be easily guided using an external magnetic field. We also successfully fabricated superhydrophobic MOF-coated cotton fabric and fiber composites. These composites exhibited exceptional oil sorption properties achieving rapid removal of floating crude oil from water, as well as efficient purification of oil-in-water emulsions. They are also regenerable and reusable for multiple sorption processes. Overall, the results described here pave the way for an unprecedented expansion of the family of MOF-based superhydrophobic materials, as virtually any MOF could be converted into a superhydrophobic compound by applying the new synthetic approach.

3.
Inorg Chem ; 62(39): 15971-15982, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37721531

RESUMO

Metal sulfide ion exchange materials (MSIEs) are of interest for nuclear waste remediation applications. We report the high stability of two structurally related metal sulfide ion exchange materials, Na2xMg2y-xSn4-yS8 (Mg-NMS) and Na2SnS3 (Na-NMS), in strongly acid media, in addition to the preparation of Na2xNi2y-xSn4-yS8 (Ni-NMS). Their formation progress during synthesis is studied with in-situ methods, with the target phases appearing in <15 min, reaction completion in <12 h, and high yields (75-80%). Upon contact with nitric or hydrochloric acid, these materials topotactically exchange Na+ for H+, proceeding in a stepwise protonation pathway for Na5.33Sn2.67S8. Na-NMS is stable in 2 M HNO3 and Mg-NMS is stable in 4 M HNO3 for up to 4 h, while both NMS materials are stable in 6 M HCl for up to 4 days. However, the treatment of Mg-NMS and Na-NMS with 2-6 M H2SO4 reveals a much slower protonation process since after 4 h of contact both NMS and HMS are present in the solution. The resultant protonated materials, H2xMg2y-xSn4-yS8 and H4x[(HyNay-1)1.33xSn4--1.33x]S8, are themselves solid acids and readily react with and intercalate a variety of organic amines, where the band gap of the resultant adduct is influenced by amine choice and can be tuned within the range of 1.88(5)-2.27(5) eV. The work function energy values for all materials were extracted from photoemission yield spectroscopy in air (PYSA) measurements and range from 5.47 (2) to 5.76 (2) eV, and the relative band alignments of the materials are discussed. DFT calculations suggest that the electronic structure of Na2MgSn3S8 and H2MgSn3S8 makes them indirect gap semiconductors with multi-valley band edges, with carriers confined to the [MgSn3S8]2- layers. Light electron effective masses indicate high electron mobilities.

4.
Molecules ; 28(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36677877

RESUMO

Environmental pollution has been a reality for many decades, with its contamination intensifying daily due to rapid urbanization and the ever-increasing world population. Dyes, and especially synthetic ones, constitute a category of pollutants that not only affect the quality of water but also exhibit high toxicity toward living organisms. This study was thoroughly planned to explore the removal of two toxic dyes, namely the methylene blue (MB) and methyl orange (MO) compounds from contaminated aqueous media. For this purpose, we designed and synthesized two new composite materials based on ammonium-functionalized Zr4+ MOF (MOR-1 or UiO-66-NH3+) and naturally occurring sorbents, such as bentonite and clinoptilolite. The composite materials displayed exceptional sorption capability toward both MB+ and MO- ions. A key finding of this study was the high efficiency of the composite materials to simultaneously remove MB+ and MO- under continuous flow conditions, also showing regeneration capability and reusability, thus providing an alternative to well-known mixed bed resins.

5.
Dalton Trans ; 51(45): 17301-17309, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36317666

RESUMO

In the present study we provide the sorption properties of four 8-connected Zr4+ MOFs with the general formula H16[Zr6O16(RNH-BDC)4]·solvent (RNH-BDC2- = 2-alkyl-amine-terephthalate; R = ethyl-, ET-MOF; R = propyl-, PROP-MOF; R = isobutyl-, SBUT-MOF; R = n-butyl, BUT-MOF) towards toxic Cr(VI) and radionuclide-related ReO4- oxoanions. These MOFs represent superior sorbents for the removal of oxoanionic species, in terms of kinetics, sorption isotherms, selectivity and regeneration/reusability. The excellent sorption capability of the MOFs is due to a combination of surface and intra-framework sorption phenomena. The latter process proceeds via replacement of terminal water/hydroxyl ligands from the Zr6 clusters and subsequent binding of oxonanions to the Zr4+ centers, a fact that was proved via Rietveld PXRD analysis for the anion-loaded BUT-MOF. Importantly, BUT-MOF demonstrated an exceptional sorption capacity for Cr2O72- (505 mg g-1) and was further utilized in a sorption column in the form of MOF/calcium alginate beads, displaying remarkable removal efficiency towards industrial (chrome-plating) wastewater. Furthermore, the luminescence Cr(VI) sensing properties of BUT-MOF were explored in detail, presenting high sensitivity (detection limits as low as 9 ppb) and selectivity for these species against various competitive anions.


Assuntos
Cromo , Luminescência , Água , Ânions
6.
Chem Commun (Camb) ; 58(63): 8862-8865, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35856288

RESUMO

The use of terephthalate ligands with CnH2n+1NH-chains (n ≥ 6) led to the isolation of the first examples of Zr4+-terephthalate MOFs with 6-connected frameworks. The material with hexyl-amino functional groups has been proved to be an exceptional sorbent for the removal of As(III/V) toxic species from aqueous media, whereas MOFs with heptyl to dodecyl-amino moieties are superhydrophobic with promising oil-water separation properties.


Assuntos
Ácidos Ftálicos , Interações Hidrofóbicas e Hidrofílicas , Água/química
7.
Inorg Chem ; 61(30): 11959-11972, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35861587

RESUMO

Trivalent lanthanide ions (Ln3+) hold an exceptional position in the field of optoelectronic materials due to their atomic-like emission spectra and long luminescence lifetimes. Metal-organic frameworks (MOFs) and coordination polymers are particularly suited as luminescent materials due to their structural diversity and ease of functionalization both at bridging ligands and/or metal centers. In this contribution, we present a series of mixed-metal Ln3+/Eu3+ (Ln = La, Gd) and mixed-ligand (2,6-naphthalenedicarboxylate (ndc2-) and 4-aminonaphthalene-2,6-dicarboxylate (andc2-)) MOFs belonging to three different structural types, with emissions spanning most of the visible region, thereby constituting favorable materials for color tuning and white-light emission. We investigate the thermal stability and photophysical properties of the synthesized materials with regard to their metal and ligand doping levels and structural type, where we discuss excimer and monomer emission. The photophysical study, involving both steady-state and time-resolved luminescence measurements, allows us to discuss the possible energy migration and Eu3+ sensitization pathways that take place within these materials following ligand excitation. Low-temperature luminescence studies led us to determine the energies of the ligand-based excited states and investigate their participation in thermally activated energy transfer mechanisms within the studied lattices. We observe emission quantum yields of up to 87% for the Eu3+-doped materials, while their ligand- and metal-doped counterparts show decreased quantum yields of up to 17%. Finally, we attempt fine color tuning by carefully adjusting the doping levels to achieve yellow and white-light emission.

8.
Inorg Chem ; 61(20): 7847-7858, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35523200

RESUMO

Increasing global environmental pollution due to heavy metal ions raises the importance of research on new multifunctional materials for simultaneous detection and removal of these contaminants from water resources. In this study, we report a microporous 8-connected Zr4+ metal-organic framework (MOF) based on a terephthalate ligand decorated with a chelating 2-picolylamine side group (dMOR-2), which shows highly efficient fluorescence sensing and sorption of heavy metal cations. We demonstrate by detailed fluorescence studies the ability of a water-dispersible composite of dMOR-2 with polyvinylpyrrolidone for real-time detection of Cu2+, Pb2+, and Hg2+ in aqueous media. The limits of detection were found to be below 2 ppb for these species, while the system's performance is not affected by the presence of other potentially competitive ions. In addition, sorption studies showed that a composite of dMOR-2 with calcium alginate (dMOR-2@CaA) is an excellent sorbent for Pb2+ and Cu2+ ions with capacities of 376 ± 15 and 117 ± 4 mg per gram of dMOR-2@CaA, respectively, while displaying the capability for simultaneous removal of various heavy metal ions in low initial concentrations and in the presence of large excesses of other cationic species. Structural and spectroscopic studies with model ligands analogous to our material's receptor unit showed chelation to the 2-picolylamine moiety to be the main binding mode of metal ions to dMOR-2. Overall, dMOR-2 is shown to represent a rare example of a MOF, which combines sensitive fluorescence detection and high sorption capacity for heavy metal ions.


Assuntos
Estruturas Metalorgânicas , Metais Pesados , Corantes , Íons , Chumbo , Estruturas Metalorgânicas/química , Água
9.
J Chromatogr A ; 1670: 462945, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35306371

RESUMO

In this work, we introduce the use of MOFs immobilized on cotton fabrics as a sorbent phase for the fabric phase sorptive extraction and passive sampling of non-polar organic compounds from water samples. A water-stable, Zr4+-based MOF (UiO-66(Zr)-NH2) was irreversibly immobilized on polydopamine decorated cotton through a step-wise synthetic procedure that maximized the amount of MOF immobilized on the fabric surface. In this manner it was possible to combine the permeability and the large contact surface area of the host cotton substrate with the high specific surface area and sorption capacity of the MOF. The MOF@cotton composite was used as a new sorbent phase for the fabric phase sorptive extraction of UV filters, as model organic compounds, not only under static (i.e. stirring assisted) but also in dynamic, flow-through extraction mode (i.e. as a solid phase extraction sorbent phase), producing satisfactory analytical results in terms of linearity of calibration curves (10-250 µg L-1), precision (<11%), detection limits <10 µg L-1 (using a single wavelength UV detector) and recoveries (86 - 119%) from various natural water samples. As a passive sampling sorbent phase, the MOF@cotton composite could linearly accumulate UV filters over time period of 35 days with sampling rates from 0.026 to 0.352 L d-1, which are comparable to other passive sampling sorbent phases.


Assuntos
Estruturas Metalorgânicas , Cromatografia Líquida de Alta Pressão/métodos , Estruturas Metalorgânicas/química , Ácidos Ftálicos , Água , Zircônio/química
10.
Inorg Chem ; 61(4): 2017-2030, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35044748

RESUMO

Herein, we report the synthesis and characterization of a new robust Al3+ metal-organic framework MOF, [Al(OH)(PATP)]·solvent (Al-MOF-1, with PATP2- = 2-((pyridin-2-ylmethyl)amino)terephthalate). Al-MOF-1 exhibits excellent stability from highly acidic (pH = 2) to basic (pH = 12) aqueous solutions or in the presence of oxoanionic species [As(V) and Cr(VI)]. On the contrary, the related MIL-53(Al) MOF (Al(OH) (BDC), with BDC2- = terephthalate) shows a partial structure collapse under these conditions, signifying the superior chemical robustness of Al-MOF-1. Al-MOF-1 was proved to be an effective sorbent toward As(V) with efficient sorption capacity (71.9 ± 3.8 mg As/g), rapid sorption kinetics (equilibrium time ≤1 min), and high selectivity in the presence of various competing anions. Furthermore, Al-MOF-1 revealed high sorption capacities for Cr(VI) species in both neutral (124.5 ± 8.6 mg Cr/g) and acidic (63 ± 2 mg Cr/g) aqueous media, combining fast kinetics and relatively good selectivity. The limited porosity (BET = 38 m2/g) and small pores (2-3 Å) of the material indicate that the sorption process occurs exclusively on the external surface of Al-MOF-1 particles. The driving force for the capture of oxoanions by Al-MOF-1 is the strong electrostatic interactions between the oxoanionic species and the positively charged surface of MOF particles. Aiming at a practical wastewater treatment, we have also immobilized Al-MOF-1 on a cotton substrate, coated with polydopamine. The fabric sorbent exhibited highly effective removal of the toxic oxoanionic species from aqueous media under either batch or dynamic (continuous flow) conditions. In addition, Al-MOF-1 was found to be a promising luminescence sensor for detecting trace amounts of Cr(VI) in real water samples, with Cr(VI) being successfully detected at concentrations well below the acceptable limits (<50 ppb). Moreover, Al-MOF-1 was demonstrated to be a sufficient water sensor in organic solvents (LOD ≤0.25% v/v). All the above indicate that Al-MOF-1 represents a multifunctional material with a multitude of potential applications, such as environmental remediation, industrial wastewater treatment, chemical analysis, and water determination in biofuels.

11.
Dalton Trans ; 49(46): 16736-16744, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33118571

RESUMO

Alkaline earth metal ion organic frameworks (AEMOFs) represent a relatively underexplored subcategory of metal-organic frameworks (MOFs). In this contribution, we present the synthesis and structural study of the new MOFs 1-8 based on the alkaline earth ions Mg2+, Ca2+, Sr2+ and Ba2+ and the amino substituted bridging ligands 4-aminonaphthalene-2,6-dicarboxylate (ANDC2-) and 4,8-diaminonaphthalene-2,6-dicarboxylate (DANDC2-). Compounds 1, 5, 6, 7 and 8 constitute rare examples of three-dimensional MOFs which feature square planar M4 secondary building units (SBUs) surrounded by eight bridging ditopic ligands. The underlying topology of MOFs 1, 5, 7 and 8 conforms to the 4-c pcb net which can be simplified to the 8-c bcu net, while 6 adopts the 4-c lta net which simplifies to the 8-c reo net. To the best of our knowledge these are the first examples of MOFs of their structural types formed by linear dicarboxylates instead of trigonal tricarboxylates or tetrahedral tetracarboxylates. Compounds 2, 3 and 4 also feature three dimensional networks with linear rod-shaped SBUs with the Ba2+ MOF 3 displaying an sra rod-net and MOFs 2 and 4 showing very complex rod-nets with so far unique topologies. Fluorescence studies revealed that the free ligands exhibit strong blue-green emission displaying considerable positive solvatochromism thereby pointing towards charge transfer excited states involving the shift of electron density from the amino groups to the aromatic core. Correspondingly, the MOFs display ligand based fluorescence with small differences in emission maxima possibly attributable to the difference in the charge density of the metal ions combined with the different environments around ligands in the crystal structures.

12.
Chempluschem ; 82(9): 1188-1196, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31957299

RESUMO

The composite anion-exchange material MOR-1-HA (metal-organic resin-1-alginic acid) was investigated as sorbent for the capture of the methyl orange anion (MO- ) from aqueous solutions. MOR-1-HA shows a remarkably high sorption capacity (up to 859 mg g-1 ) and rapid sorption kinetics, the fastest among the reported metal-organic sorbents. It is capable of absorbing MO- over a wide pH range (1-8) and, in addition, it exhibits significant MO- sorption affinity even in the presence of large excesses of competing anions (e.g., Cl- , NO3 - , SO4 2- ). The exceptional MO- -sorption properties of MOR-1-HA arise not only from its highly porous structure and easily exchangeable Cl- anions, but also from a multitude of interaction effects, such as electrostatic interactions between MO- and the NH3 + groups of the material, hydration/dehydration, hydrophobicity/hydrophilicity, size and capacity of generating lateral interactions, and intercalation as revealed by theoretical studies. An ion-exchange column with a stationary phase containing MOR-1-HA and silica sand showed high efficiency for the removal of MO- from various types of aqueous samples. The column can be readily regenerated and reused for many runs with minimal loss (2.3-9.3 %) of its exchange capacity. The simplicity of the MOR-1-HA/sand column and its high regeneration capability and reusability make it particularly attractive for application in the remediation of MO- -contaminated industrial wastewater.

13.
Chem Sci ; 7(3): 2427-2436, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29997784

RESUMO

We report an anion exchange composite material based on a protonated amine-functionalized metal-organic framework, denoted Metal Organic Resin-1 (MOR-1), and alginic acid (HA). MOR-1-HA material shows an exceptional capability to rapidly and selectively sorb Cr(vi) under a variety of conditions and in the presence of several competitive ions. The selectivity of MOR-1-HA for Cr(vi) is shown to be the result of strong O3CrVI···NH2 interactions. The composite sorbent can be successfully utilized in an ion-exchange column, in contrast to pristine MOR-1 which forms fine suspensions in water passing through the column. Remarkably, an ion exchange column with only 1% wt MOR-1-HA and 99% wt sand (an inert and inexpensive material) is capable of reducing moderate and trace Cr(vi) concentrations to well below the acceptable safety limits for water. The relatively low cost of MOR-1-HA/sand column and its high regeneration capability and reusability make it particularly attractive for application in the remediation of Cr(vi)-bearing industrial waste.

15.
Langmuir ; 24(7): 3380-6, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18303927

RESUMO

The preparation of biocompatible (w/o) microemulsions based on R-(+)-limonene, water, and a mixture of lecithin and either 1-propanol or 1,2-propanediol as emulsifiers was considered. The choice of the compositions of the microemulsions used was based on the pseudo-ternary phase diagrams of the four-component system determined at 30 degrees C for different weight ratios of the components. When 1-propanol was considered as co-surfactant, the area of the microemulsion zone was remarkably increased. Interfacial properties and the dynamic structure of the emulsifier's monolayer were studied by electron paramagnetic resonance (EPR) spectroscopy using the spin-labeling technique. The rigidity and polarity of the interface were affected by the nature of the alcohol used as co-surfactant. When 1-propanol was used, the emulsifier's interface was much more flexible, indicating a less tight packing of lecithin molecules than in the case of 1,2-propanediol. In addition, the membrane's polarity was decreased when the diol was added as co-surfactant in the microemulsion system. To evaluate the size of the dispersed aqueous domains as a function of water content and other additives concentration, dynamic light scattering (DLS) measurements were carried out. Radii in the range from 60 to 180 nm were observed when 1-propanol was used as co-surfactant, and the water content varied from 0 to 12% w/w. Electrical conductivity measurements of R-(+)-limonene/lecithin/1-propanol/water microemulsions with increasing weight fractions of water indicated the appearance of a percolation threshold at water content above 4% w/w. Lipase from Rhizomucor miehei was solubilized in the aqueous domains of the biocompatible microemulsions, and the esterification of octanoic, dodecanoic, and hexadecanoic acids with the short-chained alcohols used as co-surfactants for the formulation of microemulsions was studied. The enzyme efficiency was affected by the chain length of the carboxylic acids and the nature of the alcohol. In the case of 1-propanol, a preference for the long-chain carboxylic acids was observed. On the contrary, when 1,2-propanediol was used formulation of the corresponding esters was not observed. This behavior could be possibly attributed to either the specificity of the lipase toward the alcohol employed for the esterification of the acids or the structural changes induced in the system when 1-propanol was replaced by 1,2-propanediol.


Assuntos
Materiais Biocompatíveis/química , Cicloexenos/química , Emulsões/química , Terpenos/química , 1-Propanol , Espectroscopia de Ressonância de Spin Eletrônica , Esterificação , Limoneno , Lipase/metabolismo , Fosfatidilcolinas , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...