Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomech Model Mechanobiol ; 18(6): 1577-1590, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31069593

RESUMO

The vestibular system in the inner ear senses angular head manoeuvres by endolymph fluid which deforms a gelatinous sensory structure (the cupula). We constructed computer models that include both the endolymph flow (using CFD modelling), the cupula deformation (using FEM modelling), and the interaction between both (using fluid-structure interaction modelling). In the wide utricle, we observe an endolymph vortex. In the initial time steps, both the displacement of the cupula and its restorative forces are still small. As a result, the endolymph vortex causes the cupula to deform asymmetrically in an S-shape. The asymmetric deflection increases the cupula strain near the crista and, as a result, enhances the sensitivity of the vestibular system. Throughout the head manoeuvre, the maximal cupula strain is located at the centre of the crista. The hair cells at the crista centre supply irregularly spiking afferents, which are more sensitive than the afferents from the periphery. Hence, the location of the maximal strain at the crista may also increase the sensitivity of the semicircular canal, but this remains to be tested. The cupula overshoots its relaxed position in a simulation of the Dix-Hallpike head manoeuvre (3 s in total). A much faster head manoeuvre of 0.222 s showed to be too short to cause substantial cupula overshoot, because the cupula time scale of both models (estimated to be 3.3 s) is an order of magnitude larger than the duration of this manoeuvre.


Assuntos
Endolinfa/fisiologia , Canais Semicirculares/patologia , Adulto , Feminino , Humanos , Masculino , Modelos Biológicos , Pressão , Estresse Mecânico
2.
Boundary Layer Meteorol ; 169(2): 185-208, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30956281

RESUMO

Simultaneous particle-image velocimetry and laser-induced fluorescence combined with large-eddy simulations are used to investigate the flow and pollutant dispersion behaviour in a rural-to-urban roughness transition. The urban roughness is characterized by an array of cubical obstacles in an aligned arrangement. A plane fence is added one obstacle height h upstream of the urban roughness elements, with three different fence heights considered. A smooth-wall turbulent boundary layer with a depth of 10h is used as the approaching flow, and a passive tracer is released from a uniform line source 1h upstream of the fence. A shear layer is formed at the top of the fence, which increases in strength for the higher fence cases, resulting in a deeper internal boundary layer (IBL). It is found that the mean flow for the rural-to-urban transition can be described by means of a mixing-length model provided that the transitional effects are accounted for. The mixing-length formulation for sparse urban canopies, as found in the literature, is extended to take into account the blockage effect in dense canopies. Additionally, the average mean concentration field is found to scale with the IBL depth and the bulk velocity in the IBL.

3.
Ultrason Sonochem ; 20(1): 502-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22658635

RESUMO

The flow in a confined container induced by an ultrasonic horn is measured by Particle Image Velocimetry (PIV). This flow is caused by acoustic streaming and highly influenced by the presence of cavitation. The jet-like experimentally observed flow is compared with the available theoretical solution for a turbulent free round jet. The similarity between both flows enables a simplified numerical model to be made, whilst the phenomenon is very difficult to simulate otherwise. The numerical model requires only two parameters, i.e. the flow momentum and turbulent kinetic energy at the position of the horn tip. The simulated flow is used as a basis for the calculation of the time required for the entire liquid volume to pass through the active cavitation region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...