Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13410, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862561

RESUMO

Fireproof coatings are the simplest, most efficient, and oldest method for protecting a wide range of flammable products, such as wood. Furthermore, surface ignition is the initial phase, so surface protection is essential to reduce fire propagation. Furthermore, delaying the spread of flames can help to save someone when a fire starts. This project synthesized flame-resistant resin starting from tetraallyloxysilane monomer as a halogen-free monomer, an intrinsic flame retardant co-curing agent. The following step synthesized polyester resin using terephthalic acid as a heat-resistant resin. Unsaturated polyester was used by bulk radical polymerization. FT-IR and 1H-NMR analysis showed the successful synthesis of the desired monomer and polymeric compound. The thermal degradation and flame retardancy of pure unsaturated polyester resin (UPE) and allyloxysilane-unsaturated polyester (AUPE) were investigated by thermogravimetric analysis (TGA/DTG/DSC). The burning test and the thermal stability of the coating layers were evaluated using standard UL 94. Physical properties of resins were evaluated using Heat Deflection Temp tests (HDT) ISO 75-A, ASTM 648, Hardness ASTM D2583, Volumetric shrinkage ASTM 3521, and Water absorption ASTM D570. The results of the tests show the successful synthesis and their flame retardant properties.

2.
J Biomater Sci Polym Ed ; : 1-30, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38944817

RESUMO

Innovation chemotherapeutic nano drug delivery systems (NDDSs) with various pharmacological achievement have become one of the hopeful therapeutic strategies in cancer therapy. This study focused on low pH, and high levels of glutathione (GSH) as two prominent characteristics of the tumor microenvironment (TME) to design a novel TME-targeted pH/redox dual-responsive P (AMA-co-DMAEMA)-b-PCL-SS-PCL-b-P (AMA-co-DMAEMA) nanoparticles (NPs) for deep tumor penetration and targeted anti-tumor therapy. The positively charged NPs exhibit strong electrostatic interactions with negatively charged cell membranes, significantly enhancing cellular uptake. Moreover, these NPs possess the unique size-shrinkable property, transitioning from 98.24 ± 27.78 to 45.56 ± 20.62 nm within the TME. This remarkable size change fosters an impressive uptake of approximately 100% by MDA-MB-231 cells within just 30 min, thereby greatly improving drug delivery efficiency. This size switchability enables passive targeting through the enhanced permeability and retention (EPR) effect, facilitating deep penetration into tumors. The NPs also demonstrate improved pH/redox-triggered drug release (∼70% at 24 h) within the TME and exhibit no toxicity in cell viability test. The cell cycle results of treated cells with docetaxel (DTX)-loaded NPs revealed G2/M (84.6 ± 1.16%) arrest. The DTX-loaded NPs showed more apoptosis (62.6 ± 3.7%) than the free DTX (51.8 ± 3.2%) in treated cells. The western blot and RT-PCR assays revealed that apoptotic genes and proteins expression of treated cells were significantly upregulated with the DTX-loaded NPs vs. the free DTX (Pvalue<.001). In conclusion, these findings suggest that this novel-engineered NPs holds promise as a TME-targeted NDDS.

3.
Sci Rep ; 14(1): 11475, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769448

RESUMO

In recent years, using nanomaterials based on multi-wall carbon nanotubes (MWCNT) through the activation of peroxymonosulfate (PMS) has attracted more attention to the degradation of organic pollutants. This research presented a new route for the synthesis of MWCNT/CoMn2O4 nanocomposite for the degradation of picric acid using advanced oxidation processes (AOPs). Firstly, CoMn2O4 nanoparticles were prepared and then loaded on MWCNT using ultrasonic waves. The results of various analyzes confirmed the successful loading of nanoparticles on carbon nanotubes. As the degradation process proceeds through oxidation processes, the high electronic conductivity of MWCNT and the active sites of Mn and Co in the nanocomposite play an essential role in activating PMS to generate reactive oxygen species (ROS). An investigation of the reaction mechanism in different conditions showed that the highest speed of picric acid decomposition in the presence of nanocomposite (98%) was in 47 min. However, the scavenger test showed that HO· and SO4·- radicals are more important in the degradation process. Meanwhile, the results showed that removing picric acid using MWCNT/CoMn2O4 was more effective than CoMn2O4 alone and confirmed the interaction effect of MWCNT nanotubes with AB2O4 nanocatalyst.

4.
Sci Rep ; 14(1): 7011, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528090

RESUMO

This research investigated the utilization of graphene quantum dot/montmorillonite (GQD/MMT) as an effective nanofiller in a hydrogel composed of salep biopolymer. The semi-IPN hydrogel was synthesized using salep as the substrate, acrylamide (AAm) as the monomer, ammonium persulfate (APS) as an initiator in free radical polymerization, and N,N'-methylenebisacrylamide (MBA) as a cross-linking agent. The hydrogels were applied to remove safranin (SA), methylene blue (MB), crystal violet (CV), methyl green (MG), congo red (CR), and malachite green (MG) dyes from the water. The diverse properties were analyzed using a scanning electron microscope, fourier infrared spectroscopy, mapping, energy dispersive spectroscopy, weighing analysis, X-ray diffraction, and thermal stability analyses. The optimism of the prepared adsorbent in dye absorption was evaluated by measuring the swelling amount, pH impact, adsorbent dosage, and contact time. The adsorption calculations were described using kinetics and isotherm models. The results indicated that the Langmuir isotherm model (R2 = 99.6) and the pseudo-second-order kinetic model (R2 = 99.9) provided the best fit for the absorption process of MB. The presence of additional amounts of GQD/MMT had a reciprocal effect on the adsorption efficiency due to the accumulation of GQD/MMT in the semi-interpenetrating polymer network (semi-IPN (structure. The findings revealed that the samples exhibited high thermal stability, and the absorption process was primarily chemical. Furthermore, the nanocomposite hydrogels demonstrated distinct mechanisms for absorbing anionic dye (CR) and cationic dye (MB). Under optimal conditions, using 7 wt% GQD/MMT at a concentration of 5 ppm, pH = 7, an adsorbent dosage of 50 mg, at room temperature, and a contact time of 90 min, the maximum removal efficiencies were achieved: MB (96.2%), SA (98.2%), MG (86%), CV (99.8%), MG (95.8%), and CR (63.4%). These results highlight the adsorbent's high absorption capacity, rapid removal rate, and reusability, demonstrating its potential as an eco-friendly and cost-effective solution for removing dyes from water.

5.
Sci Rep ; 14(1): 2069, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267510

RESUMO

This research aims to discover a viable substitute for the common harmful plastic packaging utilized in food products. Citric acid was employed as an accessible and risk-free precursor in synthesizing graphene quantum dots (GQDs). Using the efficient carbonization technique, GQDs were obtained and subsequently transferred to nano-biofilms in varying percentages relative to natural polymers. FT-IR, XRD, FE-SEM, EDX, and AFM analyses were conducted to examine the formation of the nano-biofilms. GQDs demonstrated optimal performance in the disk diffusion method and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical approach. Adding GQDs to starch and gelatin composite improved the physical properties of nano-biofilms such as moisture contact, swelling index, and solubility. The transparency of the films was reduced by GQDs, which reduces the transmission of visible light and plays an important role in food protection. The packaging films' weight loss due to decomposition was examined after being buried in soil for 50 days, which relieved the eco-concerns of these packaging films. To evaluate the performance of the films in inhibiting food spoilage, cherries, and cucumbers were packed with a control film and the fabricated film containing 14 wt% of GQD. After 14 days, the modified nano-biofilm was able to maintain the freshness of the samples.


Assuntos
Grafite , Pontos Quânticos , Gelatina , Espectroscopia de Infravermelho com Transformada de Fourier , Triticum , Amido
6.
Sci Rep ; 13(1): 21279, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042885

RESUMO

A water-soluble nickel complex based on amino-ß-CD was developed using a facile method and exhibits excellent catalytic performance in the Suzuki reaction in water. This synthesized complex has been characterized using UV-Vis, AAS, TGA, and FT-IR techniques. The easily synthesized novel supramolecular catalysts have been applied as a green and eco-friendly catalyst in the Suzuki coupling for preparing diverse biaryls. This result indicates that using 2.5 mol% of nickel, K2CO3 as the best base, and water as the green solvent are the best reaction conditions. This new catalyst features easy handling, low-cost, mild, and simple protocol. The use of low-cost and accessibility of the reagents, modest conditions, and good yields of products are notable characteristics of this method. Using aqueous media with this catalyst as a proper catalyst makes the presented process a fascinating method compared to most reports. Under mild reaction conditions, this green Ni(II)-ß-CD catalyst displayed recyclable behavior seven times with minor loss in its catalytic activity.

7.
Sci Rep ; 13(1): 17894, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857651

RESUMO

In the research, the core-shell procedure synthesized a novel magnetically separable heterogeneous nanocatalyst with high stability named Fe3O4@CPTMO@dithizone-Ni. In this method, Fe3O4 was modified as a magnetic core using surfactant (SDS) and polyethylene glycol (PEG) coating; after functionalizing the magnetic nanoparticles with 3-chloropropyl-tri-methoxysilane and dithizone, Ni metal was immobilized. The prepared catalyst was identified and specified utilizing diverse physicochemical techniques involving FT-IR, XRD, SEM, EMA, BET, ICP, EDS, TGA, Raman, and TEM. In the following, to vouch for the efficiency of the obtaining catalyst for the green synthesis of 4H-benzo[h]chromenes utilizing the three-component, one-pot condensation reaction of α-naphthol, aryl glyoxal, and malononitrile as precursors were evaluated. The catalyst exhibited high recyclability with a slight reduction in activity at least eight series without a substantial decrease in stability and efficiency. The synthesized nanocatalyst was evaluated in various conditions such as different solvents, etc. the best of these conditions is the initial concentration of 30 mg of nanocatalyst with water as a solvent in 3 min with 98% yield. The prominent merits of the present research include easy separation of the catalyst without centrifugation, high-accessible raw precursors, cost-effectiveness, environmental friendliness, green reaction status, quick reaction, and excellent product yields.

8.
Sci Rep ; 13(1): 10112, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344493

RESUMO

The pyranoquinoline derivatives are synthetically important due to their biological properties. In this research, these derivatives were produced through an environmentally friendly method. This method includes the use of CuMnxOy (x = 2, and y = 4)-GO as a nanocatalyst, which is easy to produce, has excellent performance, cost-effectiveness, and recyclability among its features, and also the use of water as a green solvent. Pyranoquinolines through the one-pot, the multi-component reaction between different derivatives of aryl glyoxal, ethyl cyanoacetate, and 4-hydroxyquinoline-2(1H)-one were synthesized using nanocatalyst, K2CO3, and H2O. Also, the structure of the CuMnxOy-GO nanocatalyst was evaluated and confirmed via different analyses. The distinguishing features of this work compared to previous works are easy workup, recyclability of nanocatalyst, facile synthesis process, and provide high yields of products.

9.
Sci Rep ; 13(1): 2564, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36781940

RESUMO

In this study, a new, efficient and stable magnetically heterogeneous nanocatalyst of Fe3O4@CPTMO-phenylalanine-Ni via multi steps process starting from simple and cost-effective precursors was designed and successfully synthesized, and physico-chemical, structural, and magnetic properties have fully been characterized by several analytical methods involving SEM-EDS, FT-IR, TGA, VSM, XRD, ICP, BET, TEM, and EMA. The catalytic performance of the Fe3O4@CPTMO-phenylalanine-Ni can be used as an effective and recyclable nanocatalyst with facile separation by magnetic forces for the preparation of substituted pyrazoles with high yields through the one-pot, three-component condensation reaction of various arylglyoxals, diketones, and 1H-pyrazole-5-amines under mild conditions. The nanocatalyst's activity after being used by four consecutive times in a cycle reaction without distinct deterioration remained unchanged or was found to be a slight decrease. The advantages of this study are simplicity, low cost, facile synthesis process, and environmentally secure nature.

10.
Sci Rep ; 12(1): 22173, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36550173

RESUMO

In the present study, the Fe3O4@Glycerol-Cu complex supported magnetically as a nanoparticle was prepared by grafting. Firstly, Fe3O4 NPs were synthesized by FeCl3.6H2O and FeCl2.4H2O according to the reported method, and subsequently, the prepared MNP with 3-chloropropyltrimethoxysilane. After that, the support-glycerol was functionalized on the surface of MNP-(CH2)3Cl for graft and stabilization of copper metal. Our purpose is to use the Fe3O4@Glycerol-Cu as a green, recoverable, novel, and affordable nanocatalyst in the effective synthesis of 2-amino-4H-chromenes. FT-IR, XRD, TGA, BET, VSM, TEM, and SEM-EDX techniques were examined to characterize this nanocatalyst. This result demonstrates that copper and organic compounds have appropriately reacted, with the support of MNP-(CH2)3Cl, and the crystalline structure have preserved in the MNP-(CH2)3Cl/Glycerol-Cu nanocatalyst confirmed the formation of the base Cu complex grafted on the surface of the nanoparticles. Finally, as can be seen, the nanoparticle size is 5-15 nm. This heterogeneous nanocatalyst illustrated excellent recyclable behavior, and can be used several times without notable reduction of its activity.


Assuntos
Cobre , Glicerol , Cobre/química , Benzopiranos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Fenômenos Magnéticos
11.
Sci Rep ; 12(1): 19942, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36402805

RESUMO

Cr2O3 nanoparticles were prepared using Zingiber officinal extract which were used as an efficient and reusable catalyst in the practical synthesis of polysubstituted imidazoles by means of a convenient reaction of aromatic aldehydes with ammonium acetate and benzil under microwave irradiation and H2O as solvent. The structure of the compounds was studied by IR and 1H-NMR spectrum. The most important benefits of this process are operational simplicity, reasonable reaction times, and excellent yield of products. The results show that the optimal conditions for the formation of imidazole derivatives are as follow: power of 400 W, reaction time of 4-9 min, H2O as a solvent, and 15 mmol of catalyst amount.


Assuntos
Micro-Ondas , Nanopartículas , Nanopartículas/química , Imidazóis/química , Solventes , Extratos Vegetais
12.
Sci Rep ; 12(1): 8585, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35595795

RESUMO

The present work introduces a one-step and facile hydrothermal procedure as a green process for the first time to synthesize nickel(II) oxide (NiO) nanoparticles. The as-prepared nanomaterials were used as high efficient, low toxic and cost catalyst for the synthesis of some organic compounds. Ni(NO3)2 and some natural extract were used as a surfactant for the first time to synthesis NiO nanomaterials. A high synthesis yield (91%) was obtained for S2. Rietveld analysis affirmed the cubic crystal system of the obtained NiO nanocatalyst. The morphology studies were carried out with the FESEM method and the images revealed a change from non-homogenous to homogenous spherical particles when the Barberryas was used instead of orange blossom surfactant. Besides, the images revealed that the particle size distribution was in the range of 20 to 60 nm. The synthesized catalysts were used for the first time in Biginelli multicomponent reactions (MCRs) for the preparation of 3,4-dihydropyrimidin-2(1H)-ones (DHPMs) under the present facile reaction conditions. High yield (97%) of the final product was achieved at the optimum condensation reaction conditions (Catalyst: 60 mg; temperature: 90 °C and time: 90 min) when ethyl acetoacetate/methyl acetoacetate (1 mmol), benzaldehyde (1 mmol) and urea (1.2 mmol) were used. A kinetic study affirmed pseudo-first-order model for Biginelli reactions followed the pseudo-first-order model.


Assuntos
Nanopartículas , Níquel , Catálise , Níquel/química , Óxidos , Tensoativos
13.
Sci Rep ; 11(1): 23769, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34887509

RESUMO

Manipulation of materials is considered as one of the eminent strategies to create desirable catalysts. In this regard, increasing surface area and decreasing dimensions of catalysts have been widely employed on account of effectiveness of these methods. Herein, aerogel form of chitosan as a sustainable, and high aspect ratio compound is employed as a green support for the catalytic purposes. Chitosan aerogel was modified with Fe(II)-phthalocyanine to produce a heterogeneous catalyst for oxidation reactions. The synthesized catalyst promoted the oxidation reactions of alcohols and alkyl arenes to the corresponding aldehydes and ketones using H2O2 as an oxidant in 24 h. The reactions for aliphatic and aromatic alcohols gave turnover numbers of 106-109 at 80 °C and 106-117 at room temperature, respectively. The oxidations of alkyl arenes were carried out with turnover numbers laying in the range of 106-117 at 100 °C. The low toxicity, inexpensive nature, and recycling possibility of the catalyst accompanied by the reaction mild conditions, clean oxidant, and excellent yields offer chitosan aerogel modified with Fe(II)-phthalocyanine as a promising catalyst for oxidation reactions.

14.
Food Chem ; 339: 128070, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33152866

RESUMO

The co-pigmentation reactions involving anthocyanins of sour cherry (Prunus cerasusL.) were investigated with tannic, caffeic, 4-hydroxybenzoic, gallic, and malic acids at pH 3.5. The influence of the co-pigments with different concentrations (120, 240, 480, and 960 mg/L), and temperatures (20, 40, 60, 80 and 100 ℃), on the co-pigmentation effects, stoichiometric ratio (n), the equilibrium constant (K) and thermodynamic parameters (ΔG°, ΔH°, and ΔS°) were determined.The strongest immediate co-pigmentation reactions were observed at 960 mg/L, being significantly highest using tannic acid; also,the greatest bathochromic and hyperchromic effects were reasonable for itsn,K, and ΔG° values of 0.64, 56.55, and -10.00 kJ/mol, respectively. Furthermore, tannic and caffeic acids, with the highest negative values ofΔH°(-11.74 kJ/mol) andΔS°(-8.08 J/K.mol) led to the most excellent stability at 100 ℃.The presence of anthocyanins in the sour cherry extract was confirmed with the Fourier-transform infrared spectroscopy technique.


Assuntos
Antocianinas/química , Antocianinas/isolamento & purificação , Pigmentação , Prunus avium/química , Temperatura , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...