Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 21(8): 3664-3670, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33847503

RESUMO

Single crystalline magnetic FeCo nanostars were prepared using an organometallic approach under mild conditions. The fine-tuning of the experimental conditions allowed the direct synthesis of these nano-octopods with body-centered cubic (bcc) structure through a one-pot reaction, contrarily to the seed-mediated growth classically used. The FeCo nanostars consist of 8 tetrahedrons exposing {311} facets, as revealed by high resolution transmission electron microscopy (HRTEM) imaging and electron tomography (ET), and exhibit a high magnetization comparable with the bulk one (Ms = 235 A·m2·kg-1). Complex 3D spin configurations resulting from the competition between dipolar and exchange interactions are revealed by electron holography. This spin structures are stabilized by the high aspect ratio tetrahedral branches of the nanostars, as confirmed by micromagnetic simulations. This illustrates how magnetic properties can be significantly tuned by nanoscale shape control.

2.
Nano Lett ; 19(2): 1379-1386, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30645938

RESUMO

Single-crystalline FeCo nanoparticles with tunable size and shape were prepared by co-decomposing two metal-amide precursors under mild conditions. The nature of the ligands introduced in this organometallic synthesis drastically affects the reactivity of the precursors and, thus, the chemical distribution within the nanoparticles. The presence of the B2 short-range order was evidenced in FeCo nanoparticles prepared in the presence of HDAHCl ligands, combining 57Fe Mössbauer, zero-field 59Co ferromagnetic nuclear resonance (FNR), and X-ray diffraction studies. This is the first time that the B2 structure is directly formed during synthesis without the need of any annealing step. The as-prepared nanoparticles exhibit magnetic properties comparable with the ones for the bulk ( Ms = 226 Am2·kg-1). Composite magnetic materials prepared from these FeCo nanoparticles led to a successful proof-of-concept of the integration on inductor-based filters (27% enhancement of the inductance value at 100 MHz).

3.
Front Chem ; 6: 609, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619818

RESUMO

This paper deals with the synthesis of high-magnetization porous silicon-based nanocomposites. Using well-controlled organometallic synthesis of ferromagnetic FeCo nanoparticles, the impregnation of mesoporous silicon has been performed by immersion of porous silicon in a colloidal solution. The technique was optimized by controlling the temperature, the immersion duration, and the solvent nature. The characterization of the nanocomposites showed a homogeneous filling of the pores and a high magnetization of 135 emu/cm3. Such composites present a great interest for many applications including data storage, medical instrumentations, catalysis, or electronics.

4.
Nanoscale Res Lett ; 7(1): 523, 2012 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-23009746

RESUMO

To study the influence of localized porous silicon regions on radiofrequency performances of passive devices, inductors were integrated on localized porous silicon regions, full porous silicon sheet, bulk silicon and glass substrates. In this work, a novel strong, resistant fluoropolymer mask is introduced to localize the porous silicon on the silicon wafer. Then, the quality factors and resonant frequencies obtained with the different substrates are presented. A first comparison is done between the performances of inductors integrated on same-thickness localized and full porous silicon sheet layers. The effect of the silicon regions in the decrease of performances of localized porous silicon is discussed. Then, the study shows that the localized porous silicon substrate significantly reduces losses in comparison with high-resistivity silicon or highly doped silicon bulks. These results are promising for the integration of both passive and active devices on the same silicon/porous silicon hybrid substrate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...