Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Methods Clin Dev ; 26: 119-131, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-35795780

RESUMO

Severe congenital neutropenia (SCN) is a life-threatening marrow failure disorder, usually caused by heterozygous mutations in ELANE. Potential genetic treatment strategies include biallelic knockout or gene correction via homology-directed repair (HDR). Such strategies, however, involve the potential loss of the essential function of the normal allele product or limited coverage of diverse monogenic mutations within the patient population, respectively. As an alternative, we have developed a novel CRISPR-based monoallelic knockout strategy that precisely targets the heterozygous sites of single-nucleotide polymorphisms (SNPs) associated with most ELANE mutated alleles. In vitro studies demonstrate that patients' unedited hematopoietic CD34+ cells have significant abnormalities in differentiation and maturation, consistent with the hematopoietic defect in SCN patients. Selective knockout of the mutant ELANE allele alleviated these cellular abnormalities and resulted in about 50%-70% increase in normally functioning neutrophils (p < 0.0001). Genomic analysis confirmed that ELANE knockout was specific to the mutant allele and involved no off-targets. These results demonstrate the therapeutic potential of selective allele editing that may be applicable to SCN and other autosomal dominant disorders.

2.
Cell Rep ; 31(5): 107591, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32375045

RESUMO

The emerging appreciation of plasticity among pancreatic lineages has created interest in harnessing cellular reprogramming for ß cell replacement therapy of diabetes. Current reprogramming methodologies are inefficient, largely because of a limited understanding of the underlying mechanisms. Using an in vitro reprogramming system, we reveal the transcriptional repressor RE-1 silencing transcription factor (REST) as a barrier for ß cell gene expression in the reprogramming of pancreatic exocrine cells. We observe that REST-bound loci lie adjacent to the binding sites of multiple key ß cell transcription factors, including PDX1. Accordingly, a loss of REST function combined with PDX1 expression results in the synergistic activation of endocrine genes. This is accompanied by increased histone acetylation and PDX1 binding at endocrine gene loci. Collectively, our data identify a mechanism for REST activity involving the prevention of PDX1-mediated activation of endocrine genes and uncover REST downregulation and the resulting chromatin alterations as key events in ß cell reprogramming.


Assuntos
Reprogramação Celular/fisiologia , Células Endócrinas/metabolismo , Sistema Endócrino/metabolismo , Proteínas de Homeodomínio/metabolismo , Transativadores/metabolismo , Diferenciação Celular/fisiologia , Elementos Facilitadores Genéticos/genética , Humanos , Células Secretoras de Insulina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Pâncreas/metabolismo
3.
Genes Dev ; 30(17): 1991-2004, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27664238

RESUMO

Multiple transcriptional and epigenetic changes drive differentiation of embryonic stem cells (ESCs). This study unveils an additional level of gene expression regulation involving noncanonical, cap-independent translation of a select group of mRNAs. This is driven by death-associated protein 5 (DAP5/eIF4G2/NAT1), a translation initiation factor mediating IRES-dependent translation. We found that the DAP5 knockdown from human ESCs (hESCs) resulted in persistence of pluripotent gene expression, delayed induction of differentiation-associated genes in different cell lineages, and defective embryoid body formation. The latter involved improper cellular organization, lack of cavitation, and enhanced mislocalized apoptosis. RNA sequencing of polysome-associated mRNAs identified candidates with reduced translation efficiency in DAP5-depleted hESCs. These were enriched in mitochondrial proteins involved in oxidative respiration, a pathway essential for differentiation, the significance of which was confirmed by the aberrant mitochondrial morphology and decreased oxidative respiratory activity in DAP5 knockdown cells. Further analysis identified the chromatin modifier HMGN3 as a cap-independent DAP5 translation target whose knockdown resulted in defective differentiation. Thus, DAP5-mediated translation of a specific set of proteins is critical for the transition from pluripotency to differentiation, highlighting the importance of cap-independent translation in stem cell fate decisions.


Assuntos
Diferenciação Celular/genética , Fator de Iniciação Eucariótico 4G/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Células-Tronco Embrionárias Humanas/citologia , Apoptose/genética , Corpos Embrioides/patologia , Fator de Iniciação Eucariótico 4G/genética , Técnicas de Silenciamento de Genes , Proteínas HMGN/genética , Proteínas HMGN/metabolismo , Humanos , Células-Tronco Pluripotentes/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...