Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 9(7): e102092, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25036864

RESUMO

Pompe disease is an inherited lysosomal storage disorder that results from a deficiency in acid α-glucosidase (GAA) activity due to mutations in the GAA gene. Pompe disease is characterized by accumulation of lysosomal glycogen primarily in heart and skeletal muscles, which leads to progressive muscle weakness. We have shown previously that the small molecule pharmacological chaperone AT2220 (1-deoxynojirimycin hydrochloride, duvoglustat hydrochloride) binds and stabilizes wild-type as well as multiple mutant forms of GAA, and can lead to higher cellular levels of GAA. In this study, we examined the effect of AT2220 on mutant GAA, in vitro and in vivo, with a primary focus on the endoplasmic reticulum (ER)-retained P545L mutant form of human GAA (P545L GAA). AT2220 increased the specific activity of P545L GAA toward both natural (glycogen) and artificial substrates in vitro. Incubation with AT2220 also increased the ER export, lysosomal delivery, proteolytic processing, and stability of P545L GAA. In a new transgenic mouse model of Pompe disease that expresses human P545L on a Gaa knockout background (Tg/KO) and is characterized by reduced GAA activity and elevated glycogen levels in disease-relevant tissues, daily oral administration of AT2220 for 4 weeks resulted in significant and dose-dependent increases in mature lysosomal GAA isoforms and GAA activity in heart and skeletal muscles. Importantly, oral administration of AT2220 also resulted in significant glycogen reduction in disease-relevant tissues. Compared to daily administration, less-frequent AT2220 administration, including repeated cycles of 4 or 5 days with AT2220 followed by 3 or 2 days without drug, respectively, resulted in even greater glycogen reductions. Collectively, these data indicate that AT2220 increases the specific activity, trafficking, and lysosomal stability of P545L GAA, leads to increased levels of mature GAA in lysosomes, and promotes glycogen reduction in situ. As such, AT2220 may warrant further evaluation as a treatment for Pompe disease.


Assuntos
1-Desoxinojirimicina/farmacologia , Glucana 1,4-alfa-Glucosidase/genética , Glucana 1,4-alfa-Glucosidase/metabolismo , Doença de Depósito de Glicogênio Tipo II/metabolismo , Glicogênio/metabolismo , Lisossomos/efeitos dos fármacos , Mutação , 1-Desoxinojirimicina/administração & dosagem , 1-Desoxinojirimicina/farmacocinética , Administração Oral , Animais , Biocatálise/efeitos dos fármacos , Disponibilidade Biológica , Células COS , Chlorocebus aethiops , Modelos Animais de Doenças , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Estabilidade Enzimática/efeitos dos fármacos , Técnicas de Inativação de Genes , Glucana 1,4-alfa-Glucosidase/biossíntese , Doença de Depósito de Glicogênio Tipo II/enzimologia , Doença de Depósito de Glicogênio Tipo II/patologia , Humanos , Isoenzimas/biossíntese , Isoenzimas/genética , Isoenzimas/metabolismo , Lisossomos/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Mutantes/biossíntese , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Transporte Proteico/efeitos dos fármacos , Proteólise/efeitos dos fármacos
2.
Assay Drug Dev Technol ; 9(3): 213-35, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21612550

RESUMO

Many human diseases result from mutations in specific genes. Once translated, the resulting aberrant proteins may be functionally competent and produced at near-normal levels. However, because of the mutations, the proteins are recognized by the quality control system of the endoplasmic reticulum and are not processed or trafficked correctly, ultimately leading to cellular dysfunction and disease. Pharmacological chaperones (PCs) are small molecules designed to mitigate this problem by selectively binding and stabilizing their target protein, thus reducing premature degradation, facilitating intracellular trafficking, and increasing cellular activity. Partial or complete restoration of normal function by PCs has been shown for numerous types of mutant proteins, including secreted proteins, transcription factors, ion channels, G protein-coupled receptors, and, importantly, lysosomal enzymes. Collectively, lysosomal storage disorders (LSDs) result from genetic mutations in the genes that encode specific lysosomal enzymes, leading to a deficiency in essential enzymatic activity and cellular accumulation of the respective substrate. To date, over 50 different LSDs have been identified, several of which are treated clinically with enzyme replacement therapy or substrate reduction therapy, although insufficiently in some cases. Importantly, a wide range of in vitro assays are now available to measure mutant lysosomal enzyme interaction with and stabilization by PCs, as well as subsequent increases in cellular enzyme levels and function. The application of these assays to the identification and characterization of candidate PCs for mutant lysosomal enzymes will be discussed in this review. In addition, considerations for the successful in vivo use and development of PCs to treat LSDs will be discussed.


Assuntos
Bioensaio/métodos , Desenho de Fármacos , Doenças por Armazenamento dos Lisossomos/tratamento farmacológico , Chaperonas Moleculares/química , Chaperonas Moleculares/uso terapêutico , Tecnologia Farmacêutica/métodos , Animais , Humanos
3.
FEBS J ; 277(7): 1618-38, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20148966

RESUMO

Gaucher disease is caused by mutations in the gene that encodes the lysosomal enzyme acid beta-glucosidase (GCase). We have shown previously that the small molecule pharmacological chaperone isofagomine (IFG) binds and stabilizes N370S GCase, resulting in increased lysosomal trafficking and cellular activity. In this study, we investigated the effect of IFG on L444P GCase. Incubation of Gaucher patient-derived lymphoblastoid cell lines (LCLs) or fibroblasts with IFG led to approximately 3.5- and 1.3-fold increases in L444P GCase activity, respectively, as measured in cell lysates. The effect in fibroblasts was increased approximately 2-fold using glycoprotein-enrichment, GCase-immunocapture, or by incubating cells overnight in IFG-free media prior to assay, methods designed to maximize GCase activity by reducing IFG carryover and inhibition in the enzymatic assay. IFG incubation also increased the lysosomal trafficking and in situ activity of L444P GCase in intact cells, as measured by reduction in endogenous glucosylceramide levels. Importantly, this reduction was seen only following three-day incubation in IFG-free media, underscoring the importance of IFG removal to restore lysosomal GCase activity. In mice expressing murine L444P GCase, oral administration of IFG resulted in significant increases (2- to 5-fold) in GCase activity in disease-relevant tissues, including brain. Additionally, eight-week IFG administration significantly lowered plasma chitin III and IgG levels, and 24-week administration significantly reduced spleen and liver weights. Taken together, these data suggest that IFG can increase the lysosomal activity of L444P GCase in cells and tissues. Moreover, IFG is orally available and distributes into multiple tissues, including brain, and may thus merit therapeutic evaluation for patients with neuronopathic and non-neuronopathic Gaucher disease.


Assuntos
Doença de Gaucher/genética , Imino Piranoses/química , Doenças por Armazenamento dos Lisossomos/genética , Mutação , beta-Glucosidase/genética , Animais , Relação Dose-Resposta a Droga , Fibroblastos/metabolismo , Glucosilceramidase/metabolismo , Humanos , Masculino , Camundongos , Microscopia Confocal/métodos , Chaperonas Moleculares/metabolismo , Ratos , Ratos Sprague-Dawley
4.
Nat Chem Biol ; 3(2): 101-7, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17187079

RESUMO

Gaucher disease results from mutations in the lysosomal enzyme acid beta-glucosidase (GCase). Although enzyme replacement therapy has improved the health of some affected individuals, such as those with the prevalent N370S mutation, oral treatment with pharmacological chaperones may be therapeutic in a wider range of tissue compartments by restoring sufficient activity of endogenous mutant GCase. Here we demonstrate that isofagomine (IFG, 1) binds to the GCase active site, and both increases GCase activity in cell lysates and restores lysosomal trafficking in cells containing N370S mutant GCase. We also compare the crystal structures of IFG-bound GCase at low pH with those of glycerol-bound GCase at low pH and apo-GCase at neutral pH. Our data indicate that IFG induces active GCase, which is secured by interactions with Asn370. The design of small molecules that stabilize substrate-bound conformations of mutant proteins may be a general therapeutic strategy for diseases caused by protein misfolding and mistrafficking.


Assuntos
Doença de Gaucher/enzimologia , Glucosilceramidase/química , Piperidinas/química , Domínio Catalítico , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Fibroblastos/metabolismo , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/metabolismo , Glucosilceramidase/antagonistas & inibidores , Glucosilceramidase/metabolismo , Humanos , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Imino Piranoses/química , Imino Piranoses/farmacologia , Modelos Moleculares , Piperidinas/farmacologia , Ligação Proteica , Conformação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos
5.
J Physiol ; 539(Pt 2): 333-46, 2002 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-11882668

RESUMO

The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel bears two nucleotide-binding domains (NBD1 and NBD2) that control its ATP-dependent gating. Exactly how these NBDs control gating is controversial. To address this issue, we examined channels with a Walker-A lysine mutation in NBD1 (K464A) using the patch clamp technique. K464A mutants have an ATP dependence (EC(50) approximate 60 microM) and opening rate at 2.75 mM ATP (approximately 2.1 s(-1)) similar to wild type (EC(50) approximate 97 microM; approximately 2.0 s(-1)). However, K464A's closing rate at 2.75 mM ATP (approximately 3.6 s(-1)) is faster than that of wild type (approximately 2.1 s(-1)), suggesting involvement of NBD1 in nucleotide-dependent closing. Delay of closing in wild type by adenylyl imidodiphosphate (AMP-PNP), a non-hydrolysable ATP analogue, is markedly diminished in K464A mutants due to reduction in AMP-PNP's apparent on-rate and acceleration of its apparent off-rate (approximately 2- and approximately 10-fold, respectively). Since the delay of closing by AMP-PNP is thought to occur via NBD2, K464A's effect on the NBD2 mutant K1250A was examined. In sharp contrast to K464A, K1250A single mutants exhibit reduced opening (approximately 0.055 s(-1)) and closing (approximately 0.006 s(-1)) rates at millimolar [ATP], suggesting a role for K1250 in both opening and closing. At millimolar [ATP], K464A-K1250A double mutants close approximately 5-fold faster (approximately 0.029 s(-1)) than K1250A but open with a similar rate (approximately 0.059 s(-1)), indicating an effect of K464A on NBD2 function. In summary, our results reveal that both of CFTR's functionally asymmetric NBDs participate in nucleotide-dependent closing, which provides important constraints for NBD-mediated gating models.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Lisina/genética , Lisina/fisiologia , Mutação/genética , Mutação/fisiologia , Nucleotídeos/metabolismo , Células 3T3 , Trifosfato de Adenosina/metabolismo , Adenilil Imidodifosfato/metabolismo , Algoritmos , Animais , Células CHO , Cricetinae , Relação Dose-Resposta a Droga , Eletrofisiologia , Ativação do Canal Iônico/fisiologia , Canais Iônicos/metabolismo , Cinética , Camundongos , Técnicas de Patch-Clamp , Plasmídeos/genética , Ligação Proteica , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...