Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 9(40): 35105-35113, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28901133

RESUMO

Epitaxial synthesis of Ga(As1-xPx)Ge3 alloys on Si(100) substrates is demonstrated using chemical vapor deposition reactions of [D2GaN(CH3)2]2 with P(GeH3)3 and As(GeH3)3 precursors. These compounds are chosen to promote the formation of GaAsGe3 and GaPGe3 building blocks which interlink to produce the desired crystalline product. Ge-rich (GaP)yGe5-2y analogues have also been grown with tunable Ge contents up to 90% by reactions of P(GeH3)3 with [D2GaN(CH3)2]2 under similar deposition protocols. In both cases, the crystal growth utilized Ge1-xSix buffer layers whose lattice constants were specifically tuned as a function of composition to allow perfect lattice matching with the target epilayers. This approach yielded single-phase materials with excellent crystallinity devoid of mismatch-induced dislocations. The lattice parameters of Ga(As1-xPx)Ge3 interpolated among the Ge, GaAs, and GaP end members, corroborating the Rutherford backscattering measurements of the P/As ratio. A small deviation from the Vegard's law that depends on the As/P ratio was observed and corroborated by ab initio calculations. Raman scattering shows evidence for the existence of Ga-As and Ga-P bonds in the Ge matrix. The As-rich samples exhibited photoluminescence with wavelengths similar to those observed for pure GaAsGe3, indicating that the emission profile does not change in any measurable manner by replacing As by P over a broad range up to x = 0.2. Furthermore, the photoluminescence (PL) data suggested a large negative bowing of the band gap as expected on account of a strong valence band localization on the As atoms. Spectroscopic ellipsometry measurements of the dielectric function revealed a distinct direct gap transition that closely matches the PL emission energy. These measurements also showed that the absorption coefficients can be systematically tuned as a function of composition, indicating possible applications of the new materials in optoelectronics, including photovoltaics.

2.
Virol J ; 11: 20, 2014 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24495489

RESUMO

BACKGROUND: Low-power ultrashort pulsed (USP) lasers operating at wavelengths of 425 nm and near infrared region have been shown to effectively inactivate viruses such as human immunodeficiency virus (HIV), M13 bacteriophage, and murine cytomegalovirus (MCMV). It was shown previously that non-enveloped, helical viruses such as M13 bacteriophage, were inactivated by a USP laser through an impulsive stimulated Raman scattering (ISRS) process. Recently, enveloped virus like MCMV has been shown to be inactivated by a USP laser via protein aggregation induced by an ISRS process. However, the inactivation mechanism for a clinically important class of viruses--non-enveloped, icosahedral viruses remains unknown. RESULTS AND DISCUSSIONS: We have ruled out the following four possible inactivation mechanisms for non-enveloped, icosahedral viruses, namely, (1) inactivation due to ultraviolet C (UVC) photons produced by non-linear optical process of the intense, fundamental laser beam at 425 nm; (2) inactivation caused by thermal heating generated by the direct laser absorption/heating of the virion; (3) inactivation resulting from a one-photon absorption process via chromophores such as porphyrin molecules, or indicator dyes, potentially producing reactive oxygen or other species; (4) inactivation by the USP lasers in which the extremely intense laser pulse produces shock wave-like vibrations upon impact with the viral particle. We present data which support that the inactivation mechanism for non-enveloped, icosahedral viruses is the impulsive stimulated Raman scattering process. Real-time PCR experiments show that, within the amplicon size of 273 bp tested, there is no damage on the genome of MNV-1 caused by the USP laser irradiation. CONCLUSION: We conclude that our model non-enveloped virus, MNV-1, is inactivated by the ISRS process. These studies provide fundamental knowledge on photon-virus interactions on femtosecond time scales. From the analysis of the transmission electron microscope (TEM) images of viral particles before and after USP laser irradiation, the locations of weak structural links on the capsid of MNV-1 were revealed. This important information will greatly aid our understanding of the structure of non-enveloped, icosahedral viruses. We envision that this non-invasive, efficient viral eradication method will find applications in the disinfection of pharmaceuticals, biologicals and blood products in the near future.


Assuntos
Lasers , Viabilidade Microbiana/efeitos da radiação , Norovirus/fisiologia , Norovirus/efeitos da radiação , Inativação de Vírus/efeitos da radiação , Análise Espectral Raman
3.
J Am Chem Soc ; 135(33): 12388-99, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23899409

RESUMO

In this work, we extend our strategy previously developed to synthesize functional, crystalline Si(5-2y)(AlX)y {X = N,P,As} semiconductors to a new class of Ge-III-V hybrid compounds, leading to the creation of (InP)(y)Ge(5-2y) analogues. The compounds are grown directly on Ge-buffered Si(100) substrates using gas source MBE by tuning the interaction between Ge-based P(GeH3)3 precursors and In atoms to yield nanoscale "In-P-Ge3" building blocks, which then confer their molecular structure and composition to form the target solids via complete elimination of H2. The collateral production of reactive germylene (GeH2), via partial decomposition of P(GeH3)3, is achieved by simple adjustment of the deposition conditions, leading to controlled Ge enrichment of the solid product relative to the stoichiometric InPGe3 composition. High resolution XRD, XTEM, EDX, and RBS indicate that the resultant monocrystalline (InP)(y)Ge(5-2y) alloys with y = 0.3-0.7 are tetragonally strained and fully coherent with the substrate and possess a cubic diamond-like structure. Molecular and solid-state ab initio density functional theory (DFT) simulations support the viability of "In-P-Ge3" building-block assembly of the proposed crystal structures, which consist of a Ge parent crystal in which the P atoms form a third-nearest-neighbor sublattice and "In-P" dimers are oriented to exclude energetically unfavorable In-In bonding. The observed InP concentration dependence of the lattice constant is closely reproduced by DFT simulation of these model structures. Raman spectroscopy and ellipsometry are also consistent with the "In-P-Ge3" building-block interpretation of the crystal structure, while the observation of photoluminescence suggests that (InP)(y)Ge(5-2y) may have important optoelectronic applications.

4.
J Am Chem Soc ; 133(40): 16212-8, 2011 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-21877711

RESUMO

We introduce a synthetic strategy to access functional semiconductors with general formula A(3)XY (A = IV, X-Y = III-V) representing a new class within the long-sought family of group IV/III-V hybrid compounds. The method is based on molecular precursors that combine purposely designed polar/nonpolar bonding at the nanoscale, potentially allowing precise engineering of structural and optical properties, including lattice dimensions and band structure. In this Article, we demonstrate the feasibility of the proposed strategy by growing a new monocrystalline AlPSi(3) phase on Si substrates via tailored interactions of P(SiH(3))(3) and Al atoms using gas source (GS) MBE. In this case, the high affinity of Al for the P ligands leads to Si(3)AlP bonding arrangements, which then confer their structure and composition to form the corresponding Si(3)AlP target solid via complete elimination of H(2) at ∼500 °C. First principle simulations at the molecular and solid-state level confirm that the Si(3)AlP building blocks can readily interlink with minimal distortion to produce diamond-like structures in which the P atoms are arranged on a common sublattice as third-nearest neighbors in a manner that excludes the formation of unfavorable Al-Al bonds. High-resolution XRD, XTEM, and RBS indicate that all films grown on Si(100) are tetragonally strained and fully coherent with the substrate and possess near-cubic symmetry. The Raman spectra are consistent with a growth mechanism that proceeds via full incorporation of preformed Si(3)AlP tetrahedra with residual orientational disorder. Collectively, the characterization data show that the structuro-chemical compatibility between the epilayer and substrate leads to flawless integration, as expected for pseudohomoepitaxy of an Si-like material grown on a bulk Si platform.

5.
Phys Rev Lett ; 99(4): 047403, 2007 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-17678403

RESUMO

High-resolution Raman spectroscopy is applied to suspended single-walled carbon nanotubes (SWNTs) to elucidate the puzzling differences in the lifetime of the radial breathing mode (RBM) obtained from different experimental techniques. Whereas recent tunneling experiments suggest a room temperature RBM lifetime as long as 10 ns, previous Raman experiments yield lifetimes shorter than 2 ps. The lifetimes obtained in this study are longer than 5 ps-a significant step in the direction of the tunneling results. We argue that the remaining discrepancy is due to the existence of phonon decay bottlenecks caused by the one-dimensional nature of nanotubes. Numerical simulations of the RBM decay show that it is possible to reconcile the short lifetimes measured spectroscopically with the long lifetimes obtained in tunneling experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...