Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 26(11): 9023-31, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20155983

RESUMO

A series of surfactants were designed and synthesized for use as clay modification reagents to investigate the impact of their chemical structure on the nanocomposites morphology obtained following polymerization. The behavior of the surfactant-modified clays at three different stages were investigated: after ion exchange, following dispersion in styrene monomer, and once polymerization was complete. The propensity of the styrene monomer to swell the surfactant-modified clay was observed to be a useful indicator of compatibility and predictor of the resultant polystyrene nanocomposite morphology which was directly observed using small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (TEM). It was found that the key components of surfactant design driving exfoliated morphologies were (1) the position of the ammonium group, (2) the inclusion of a polymerizable group, (3) the solubility of the surfactant in the monomer, (4) the length of the alkyl chain, and (5) sufficient concentration of surfactant used to exchange the clay. This understanding should lead to better design of clay modifications for use in polymer nanocomposites.

2.
J Am Chem Soc ; 128(33): 10819-32, 2006 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-16910677

RESUMO

A combination of cyclic voltammetry (CV), UV-vis-NIR spectroscopy and spectroelectrochemistry, hyper-Rayleigh scattering (HRS) [including depolarization studies], Z-scan and degenerate four-wave mixing (DFWM) [including studies employing an optically transparent thin-layer electrochemical (OTTLE) cell to effect electrochemical switching of nonlinearity], pump-probe, and electroabsorption (EA) measurements have been used to comprehensively investigate the electronic, linear optical, and nonlinear optical (NLO) properties of nanoscopic pi-delocalizable electron-rich alkynylruthenium dendrimers, their precursor dendrons, and their linear analogues. CV, UV-vis-NIR spectroscopy, and UV-vis-NIR spectroelectrochemistry reveal that the reversible metal-centered oxidation processes in these complexes are accompanied by strong linear optical changes, "switching on" low-energy absorption bands, the frequency of which is tunable by ligand replacement. HRS studies at 1064 nm employing nanosecond pulses reveal large nonlinearities for these formally octupolar dendrimers; depolarization measurements are consistent with lack of coplanarity upon pi-framework extension through the metal. EA studies at 350-800 nm in a poly(methyl methacrylate) matrix are consistent with the important transitions having a charge-transfer exciton character that increases markedly on introduction of peripheral polarizing substituent. Time-resolved pump-probe studies employing 55 ps, 527 nm pulses reveal absorption saturation, the longest excited-state lifetime being observed for the dendrimer. Z-scan studies at 800 nm employing femtosecond pulses reveal strong two-photon absorption that increases significantly on progression from linear complex to zero- and then first-generation dendrimer with no loss of optical transparency. Both refractive and absorptive nonlinearity for selected alkynylruthenium dendrimers have been reversibly "switched" by employing the Z-scan technique at 800 and 1180 nm and 100-150 fs pulses, together with a specially modified OTTLE cell, complementary femtosecond time-resolved DFWM and transient absorption studies at 800 nm suggesting that the NLO effects originate in picosecond time scale processes.

3.
J Am Chem Soc ; 126(39): 12234-5, 2004 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-15453734

RESUMO

The dispersion of cubic nonlinearity in the organometallic dendrimer 1,3,5-(3,5-{trans-[(dppe)2(4-O2NC6H4CC)RuCC]}2C6H3CCC6H4-4-CC)3C6H3 can be understood in terms of an interplay of two-photon absorption and absorption saturation. Simple dispersion relations reproduce the behavior of both the real and imaginary components of the hyperpolarizability.

4.
J Am Chem Soc ; 125(2): 602-10, 2003 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-12517178

RESUMO

A combination of cyclic voltammetry, UV-vis-NIR spectroelectrochemistry, time-dependent density functional theory (TD-DFT), and Z-scan measurements employing a modified optically transparent thin-layer electrochemical (OTTLE) cell has been used to identify and assign intense transitions of metal alkynyl complexes at technologically important wavelengths in the oxidized state and to utilize these transitions to demonstrate a facile electrochromic switching of optical nonlinearity. Cyclic voltammetric data for the ruthenium(II) complexes trans-[RuXY(dppe)(2)] [dppe = 1,2-bis(diphenylphosphino)ethane, X = Cl, Y = Cl (1), Ctbd1;CPh (2), 4-Ctbd1;CC(6)H(4)Ctbd1;CPh (3); X = Ctbd1;CPh, Y = Ctbd1;CPh (4), 4-Ctbd1;CC(6)H(4)Ctbd1;CPh (5)] show a quasi-reversible oxidation at 0.50-0.60 V (with respect to ferrocene/ferrocenium 0.56 V), which is assigned to the Ru(II/III) couple. The ruthenium(III) complex cations trans-[RuXY(dppe)(2)](+) were obtained by the in situ oxidation of complexes 1-5 using an OTTLE cell. The UV-vis-NIR optical spectra of 1(+)-5(+) contain a low-energy band in the near-IR region ( approximately 8000-16 000 cm(-)(1)), in contrast to 1-5, which are optically transparent at wavelengths < 22 000 cm(-)(1). TD-DFT calculations have been applied to model systems trans-[RuXY(PH(3))(4)] [X = Cl, Y = Cl, Ctbd1;CPh, or 4-Ctbd1;CC(6)H(4)Ctbd1;CPh; X = Ctbd1;CPh, Y = Ctbd1;CPh or 4-Ctbd1;CC(6)H(4)Ctbd1;CPh] to rationalize the optical spectra of 1-5 and 1(+)-5(+). The important low-energy bands in the electronic spectra of 1(+)-5(+) are assigned to the promotion of an electron from either a chloride p orbital or an ethynyl p orbital to the partially occupied HOMO. These absorption bands have been utilized to demonstrate a facile switching of cubic nonlinear optical (NLO) properties at 12 500 cm(-)(1) (corresponding to the wavelength of maximum transmission in biological materials such as tissue) using the OTTLE cell, the first electrochromic switching of molecular nonlinear refraction and absorption, and the first switching of optical nonlinearity using an electrochemical cell.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...