Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 77(4): 827-838, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27965317

RESUMO

Personalized therapy is a major goal of modern oncology, as patient responses vary greatly even within a histologically defined cancer subtype. This is especially true in acute myeloid leukemia (AML), which exhibits striking heterogeneity in molecular segmentation. When calibrated to cell-specific data, executable network models can reveal subtle differences in signaling that help explain differences in drug response. Furthermore, they can suggest drug combinations to increase efficacy and combat acquired resistance. Here, we experimentally tested dynamic proteomic changes and phenotypic responses in diverse AML cell lines treated with pan-PIM kinase inhibitor and fms-related tyrosine kinase 3 (FLT3) inhibitor as single agents and in combination. We constructed cell-specific executable models of the signaling axis, connecting genetic aberrations in FLT3, tyrosine kinase 2 (TYK2), platelet-derived growth factor receptor alpha (PDGFRA), and fibroblast growth factor receptor 1 (FGFR1) to cell proliferation and apoptosis via the PIM and PI3K kinases. The models capture key differences in signaling that later enabled them to accurately predict the unique proteomic changes and phenotypic responses of each cell line. Furthermore, using cell-specific models, we tailored combination therapies to individual cell lines and successfully validated their efficacy experimentally. Specifically, we showed that cells mildly responsive to PIM inhibition exhibited increased sensitivity in combination with PIK3CA inhibition. We also used the model to infer the origin of PIM resistance engineered through prolonged drug treatment of MOLM16 cell lines and successfully validated experimentally our prediction that this resistance can be overcome with AKT1/2 inhibition. Cancer Res; 77(4); 827-38. ©2016 AACR.


Assuntos
Leucemia Mieloide Aguda/tratamento farmacológico , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Transdução de Sinais/fisiologia , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Compostos de Bifenilo/uso terapêutico , Linhagem Celular Tumoral , Classe I de Fosfatidilinositol 3-Quinases , Simulação por Computador , Resistencia a Medicamentos Antineoplásicos , Quimioterapia Combinada , Humanos , Leucemia Mieloide Aguda/fisiopatologia , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-pim-1/fisiologia , Transdução de Sinais/efeitos dos fármacos , Tiazolidinas/uso terapêutico
2.
ACS Chem Biol ; 8(3): 643-50, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23272696

RESUMO

Transforming growth factor-ß activated kinase-1 (TAK1) is a member of the mitogen-activated protein kinase kinase kinase (MAP3K) family that regulates several signaling pathways including NF-κB signal transduction and p38 activation. TAK1 deregulation has been implicated in human diseases including cancer and inflammation. Here, we show that, in addition to its kinase activity, TAK1 has intrinsic ATPase activity, that (5Z)-7-Oxozeaenol irreversibly inhibits TAK1, and that sensitivity to (5Z)-7-Oxozeaenol inhibition in hematological cancer cell lines is NRAS mutation status and TAK1 pathway dependent. X-ray crystallographic and mass spectrometric studies showed that (5Z)-7-Oxozeaenol forms a covalent complex with TAK1. Detailed biochemical characterization revealed that (5Z)-7-Oxozeaenol inhibited both the kinase and the ATPase activity of TAK1 following a bi-phase kinetics, consistent with the irreversible inhibition mechanism. In DoHH2 cells, (5Z)-7-Oxozeaenol potently inhibited the p38 phosphorylation driven by TAK1, and the inhibition lasted over 6 h after withdrawal of (5Z)-7-Oxozeaenol. Profiling (5Z)-7-Oxozeaenol in a panel of hematological cancer cells showed that sensitive cell lines tended to carry NRAS mutations and that genes in TAK1 regulated pathways were enriched in sensitive cell lines. Taken together, we have elucidated the molecular mechanism of a TAK1 irreversible inhibitor and laid the foundation for designing next generation TAK1 irreversible inhibitors. The NRAS-TAK1-Wnt signaling network discerned in our study may prove to be useful in patient selection for TAK1 targeted agents in hematological cancers.


Assuntos
MAP Quinase Quinase Quinases/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Zearalenona/análogos & derivados , Linhagem Celular Tumoral , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Humanos , MAP Quinase Quinase Quinases/metabolismo , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Zearalenona/química , Zearalenona/farmacologia
3.
Gene ; 290(1-2): 35-43, 2002 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-12062799

RESUMO

Bile acid biosynthesis is regulated by both feed-forward and feedback mechanisms involving a cascade of nuclear hormone receptors. Feed-forward regulation of the rate limiting enzyme in bile acid biosynthesis is provided by oxysterols through liver-X-receptor alpha (NR1H3), while feedback regulation is provided by bile acids through farnesoid-X-receptor (FXR) (NR1H4). The Syrian golden hamster provides a useful model for studying lipid metabolism. The hamster metabolizes and transports dietary cholesterol in a similar manner to humans, with the resulting lipid profile being more similar to the human profile than that of other rodent models. Cloning of Fxr from Syrian golden hamster revealed four hamster Fxr splice variants that altered the N-terminal activation domain or the hinge region between the DNA and ligand binding domains. Human genomic sequence and data from hamster Fxr were used to identify and clone a novel human FXR isoform resulting from the use of an alternative promoter. RNA expression analysis indicates that the two human FXR isoforms are differentially expressed in developmental and tissue-specific patterns and are likely to provide a mechanism for cell-specific FXR-dependent transcriptional activity.


Assuntos
Processamento Alternativo , Proteínas de Ligação a DNA/genética , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Ácido Quenodesoxicólico/farmacologia , Códon de Iniciação/genética , Cricetinae , DNA Complementar/química , DNA Complementar/genética , Éxons/genética , Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Genes/genética , Humanos , Mesocricetus , Dados de Sequência Molecular , Isoformas de Proteínas/genética , RNA/genética , RNA/metabolismo , Receptores Citoplasmáticos e Nucleares , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Transcrição Gênica , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...