Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 10: 1016367, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36420143

RESUMO

Although the lineage-determining ability of transcription factors is often modulated according to cellular context, the mechanisms by which such switching occurs are not well known. Using a transcriptional programming model, we found that Atoh1 is repurposed from a neuronal to an inner ear hair cell (HC) determinant by the combined activities of Gfi1 and Pou4f3. In this process, Atoh1 maintains its regulation of neuronal genes but gains ability to regulate HC genes. Pou4f3 enables Atoh1 access to genomic locations controlling the expression of sensory (including HC) genes, but Atoh1 + Pou4f3 are not sufficient for HC differentiation. Gfi1 is key to the Atoh1-induced lineage switch, but surprisingly does not alter Atoh1's binding profile. Gfi1 acts in two divergent ways. It represses the induction by Atoh1 of genes that antagonise HC differentiation, a function in keeping with its well-known repressor role in haematopoiesis. Remarkably, we find that Gfi1 also acts as a co-activator: it binds directly to Atoh1 at existing target genes to enhance its activity. These findings highlight the diversity of mechanisms by which one TF can redirect the activity of another to enable combinatorial control of cell identity.

2.
Semin Cell Dev Biol ; 65: 60-68, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27751776

RESUMO

The proneural gene, Atoh1, is necessary and in some contexts sufficient for early inner ear hair cell development. Its function is the subject of intensive research, not least because of the possibility that it could be used in therapeutic strategies to reverse hair cell loss in deafness. However, it is clear that Atoh1's function is highly context dependent. During inner ear development, Atoh1 is only able to promote hair cell differentiation at specific developmental stages. Outside the ear, Atoh1 is required for differentiation of a variety of other cell types, for example in the intestine and cerebellum. The reasons for this context dependence are poorly understood. So far, the pathways and key players that instruct Atoh1 to act as a mechanosensory cell fate determinant in the context of the inner ear are largely unknown. Here we review evidence that suggests that Atoh1 function in hair cell differentiation is modulated by interaction with other transcription factors. We particularly focus on the possible roles of Gfi1 and Pou4f3, drawing from studies in mouse, Drosophila and C. elegans.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Ligação a DNA/genética , Células Ciliadas Auditivas/metabolismo , Proteínas de Homeodomínio/genética , Mecanorreceptores/metabolismo , Fator de Transcrição Brn-3C/genética , Fatores de Transcrição/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Diferenciação Celular , Proteínas de Ligação a DNA/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células Ciliadas Auditivas/citologia , Proteínas de Homeodomínio/metabolismo , Mecanorreceptores/citologia , Mecanotransdução Celular , Camundongos , Especificidade de Órgãos , Fator de Transcrição Brn-3C/metabolismo , Fatores de Transcrição/metabolismo
3.
Mol Cell Biol ; 32(14): 2849-60, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22586269

RESUMO

During development, proneural transcription factors of the basic helix-loop-helix (bHLH) family are required to commit cells to a neural fate. In Drosophila neurogenesis, a key mechanism promoting sense organ precursor (SOP) fate is the synergy between proneural factors and their coactivator Senseless in transcriptional activation of target genes. Here we present evidence that posttranslational modification by SUMO enhances this synergy via an effect on Senseless protein. We show that Senseless is a direct target for SUMO modification and that mutagenesis of a predicted SUMOylation motif in Senseless reduces Senseless/proneural synergy both in vivo and in cell culture. We propose that SUMOylation of Senseless via lysine 509 promotes its synergy with proneural proteins during transcriptional activation and hence regulates an important step in neurogenesis leading to the formation and maturation of the SOPs.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Fatores de Transcrição/metabolismo , Substituição de Aminoácidos , Animais , Animais Geneticamente Modificados , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem Celular , Primers do DNA/genética , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Genes de Insetos , Células HeLa , Humanos , Lisina/química , Modelos Neurológicos , Mutagênese Sítio-Dirigida , Neurogênese/genética , Neurogênese/fisiologia , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Órgãos dos Sentidos/crescimento & desenvolvimento , Órgãos dos Sentidos/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética , Técnicas do Sistema de Duplo-Híbrido
4.
Curr Opin Genet Dev ; 18(5): 411-7, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18722526

RESUMO

A key point in neural development is the commitment of progenitor cells to a specific neural fate. In all animals studied, proneural proteins - transcription factors of the basic helix-loop-helix (bHLH) family - are central to this process. The function of these factors is strongly influenced by the spatial and temporal context in which they are expressed. It is important to understand the molecular mechanisms by which developmental context interacts with and modifies the intrinsic functions and properties of the proneural proteins. Recent insights have been obtained in Drosophila and vertebrates from analysis of how bHLH proteins interact with other transcription factors to regulate target genes.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Diferenciação Celular/genética , Neurônios/citologia , Células-Tronco/metabolismo , Animais , Coenzimas/fisiologia , Drosophila/citologia , Drosophila/genética , Drosophila/metabolismo , Regulação da Expressão Gênica , Camundongos , Modelos Genéticos , Neurônios/metabolismo , Especificidade por Substrato
5.
Genes Cells ; 13(9): 915-29, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18681894

RESUMO

The question of how proneural bHLH transcription factors recognize and regulate their target genes is still relatively poorly understood. We previously showed that Scute (Sc) and Atonal (Ato) target genes have different cognate E box motifs, suggesting that specific DNA interactions contribute to differences in their target gene specificity. Here we show that Sc and Ato proteins (in combination with Daughterless) can activate reporter gene expression via their cognate E boxes in a non-neuronal cell culture system, suggesting that the proteins have strong intrinsic abilities to recognize different E box motifs in the absence of specialized cofactors. Functional comparison of E boxes from several target genes and site-directed mutagenesis of E box motifs suggests that specificity and activity require further sequence elements flanking both sides of the previously identified E box motifs. Moreover, the proneural cofactor, Senseless, can augment the function of Sc and Ato on their cognate E boxes and therefore may contribute to proneural specificity.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Drosophila/metabolismo , Elementos E-Box/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Sítios de Ligação/genética , Células Cultivadas , Drosophila/citologia , Drosophila/embriologia , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Embrião não Mamífero , Genes de Insetos , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Sequências Hélice-Alça-Hélice/genética , Imuno-Histoquímica , Luciferases/metabolismo , Dados de Sequência Molecular , Proteínas Nucleares/genética , Sensibilidade e Especificidade , Fatores de Transcrição/genética , Transfecção
6.
Dev Cell ; 7(5): 687-96, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15525530

RESUMO

In Drosophila, commitment of a cell to a sense organ precursor (SOP) fate requires bHLH proneural transcription factor upregulation, a process that depends in most cases on the interplay of proneural gene autoregulation and inhibitory Notch signaling. A subset of SOPs are selected by a recruitment pathway involving EGFR signaling to ectodermal cells expressing the proneural gene atonal. We show that EGFR signaling drives recruitment by directly facilitating atonal autoregulation. Pointed, the transcription factor that mediates EGFR signaling, and Atonal protein itself bind cooperatively to adjacent conserved binding sites in an atonal enhancer. Recruitment is therefore contingent on the combined presence of Atonal protein (providing competence) and EGFR signaling (triggering recruitment). Thus, autoregulation is the nodal control point targeted by signaling. This exemplifies a simple and general mechanism for regulating the transition from competence to cell fate commitment whereby a cell signal directly targets the autoregulation of a selector gene.


Assuntos
Drosophila/embriologia , Receptores ErbB/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Órgãos dos Sentidos/embriologia , Transdução de Sinais , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Sítios de Ligação , Proteínas de Ligação a DNA/metabolismo , Drosophila/genética , Proteínas de Drosophila , Ensaio de Desvio de Mobilidade Eletroforética , Elementos Facilitadores Genéticos , Glutationa Transferase/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Proteínas de Membrana/metabolismo , Modelos Biológicos , Modelos Moleculares , Proteínas do Tecido Nervoso , Proteínas Proto-Oncogênicas/metabolismo , Receptores Notch , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição/metabolismo , Regulação para Cima
7.
Mol Cell Biol ; 24(21): 9517-26, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15485919

RESUMO

For a particular functional family of basic helix-loop-helix (bHLH) transcription factors, there is ample evidence that different factors regulate different target genes but little idea of how these different target genes are distinguished. We investigated the contribution of DNA binding site differences to the specificities of two functionally related proneural bHLH transcription factors required for the genesis of Drosophila sense organ precursors (Atonal and Scute). We show that the proneural target gene, Bearded, is regulated by both Scute and Atonal via distinct E-box consensus binding sites. By comparing with other Ato-dependent enhancer sequences, we define an Ato-specific binding consensus that differs from the previously defined Scute-specific E-box consensus, thereby defining distinct E(Ato) and E(Sc) sites. These E-box variants are crucial for function. First, tandem repeats of 20-bp sequences containing E(Ato) and E(Sc) sites are sufficient to confer Atonal- and Scute-specific expression patterns, respectively, on a reporter gene in vivo. Second, interchanging E(Ato) and E(Sc) sites within enhancers almost abolishes enhancer activity. While the latter finding shows that enhancer context is also important in defining how proneural proteins interact with these sites, it is clear that differential utilization of DNA binding sites underlies proneural protein specificity.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/genética , Elementos E-Box/genética , Regulação da Expressão Gênica no Desenvolvimento , Sistema Nervoso/metabolismo , Neurônios/metabolismo , Fatores de Transcrição/metabolismo , Região 3'-Flanqueadora/genética , Região 5'-Flanqueadora/genética , Animais , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos , DNA/genética , DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Drosophila/citologia , Drosophila/embriologia , Drosophila/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas do Tecido Nervoso , Sistema Nervoso/citologia , Sistema Nervoso/embriologia , Fatores de Transcrição/química , Fatores de Transcrição/genética
8.
Mol Microbiol ; 51(1): 135-47, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14651617

RESUMO

It has been generally accepted that DNA modification protects the chromosome of a bacterium encoding a restriction and modification system. But, when target sequences within the chromosome of one such bacterium (Escherichia coli K-12) are unmodified, the cell does not destroy its own DNA; instead, ClpXP inactivates the nuclease, and restriction is said to be alleviated. Thus, the resident chromosome is recognized as 'self' rather than 'foreign' even in the absence of modification. We now provide evidence that restriction alleviation may be a characteristic of Type I restriction-modification systems, and that it can be achieved by different mechanisms. Our experiments support disassembly of active endonuclease complexes as a potential mechanism. We identify amino acid substitutions in a restriction endonuclease, which impair restriction alleviation in response to treatment with a mutagen, and demonstrate that restriction alleviation serves to protect the chromosome even in the absence of mutagenic treatment. In the absence of efficient restriction alleviation, a Type I restriction enzyme cleaves host DNA and, under these conditions, homologous recombination maintains the integrity of the bacterial chromosome.


Assuntos
Cromossomos Bacterianos/genética , Enzimas de Restrição do DNA/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo I/metabolismo , Proteínas de Escherichia coli , Escherichia coli/enzimologia , Escherichia coli/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Enzimas de Restrição do DNA/genética , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo I/genética , Endopeptidase Clp , Escherichia coli/classificação , Genótipo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
9.
Biophys Chem ; 103(2): 129-37, 2003 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-12568936

RESUMO

The methyltransferase component of type I DNA restriction and modification systems comprises three subunits, one DNA sequence specificity subunit and two DNA modification subunits. Limited proteolysis of the EcoKI methyltransferase shows that a 55-kDa N-terminal fragment of the 59-kDa modification subunit is resistant to degradation. We have purified this fragment and determined by mass spectrometry that proteolysis removes 43 or 44 amino acids from the C-terminus. The fragment fails to interact with the other subunits even though it still possesses secondary and tertiary structure and the ability to bind the S-adenosylmethionine cofactor. We conclude that the C-terminal region of the modification subunit of EcoKI is essential for the assembly of the EcoKI methyltransferase.


Assuntos
Subunidades Proteicas/química , DNA Metiltransferases Sítio Específica (Adenina-Específica)/biossíntese , Sequência de Aminoácidos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/isolamento & purificação , Fragmentos de Peptídeos/metabolismo , Mapeamento de Peptídeos , Desnaturação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/metabolismo , DNA Metiltransferases Sítio Específica (Adenina-Específica)/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...