Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gene Expr Patterns ; 5(4): 483-90, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15749076

RESUMO

The cadherin superfamily members play an important role in mediating cell-cell contact and adhesion (Takeichi, M., 1991. Cadherin cell adhesion receptors as a morphogenetic regulator. Science 251, 1451-1455). A distinct subfamily, neither belonging to the classical or protocadherins includes Fat, the largest member of the cadherin super-family. Fat was originally identified in Drosophila. Subsequently, orthologues of Fat have been described in man (Dunne, J., Hanby, A. M., Poulsom, R., Jones, T. A., Sheer, D., Chin, W. G., Da, S. M., Zhao, Q., Beverley, P. C., Owen, M. J., 1995. Molecular cloning and tissue expression of FAT, the human homologue of the Drosophila fat gene that is located on chromosome 4q34-q35 and encodes a putative adhesion molecule. Genomics 30, 207-223), rat (Ponassi, M., Jacques, T. S., Ciani, L., ffrench, C. C., 1999. Expression of the rat homologue of the Drosophila fat tumour suppressor gene. Mech. Dev. 80, 207-212) and mouse (Cox, B., Hadjantonakis, A. K., Collins, J. E., Magee, A. I., 2000. Cloning and expression throughout mouse development of mfat1, a homologue of the Drosophila tumour suppressor gene fat [In Process Citation]. Dev. Dyn. 217, 233-240). In Drosophila, Fat has been shown to play an important role in both planar cell polarity and cell boundary formation during development. In this study we describe the characterization of zebrafish Fat, the first non-mammalian, vertebrate Fat homologue to be identified. The Fat protein has 64% amino acid identity and 80% similarity to human FAT and an identical domain structure to other vertebrate Fat proteins. During embryogenesis fat mRNA is expressed in the developing brain, specialised epithelial surfaces the notochord, ears, eyes and digestive tract, a pattern similar but distinct to that found in mammals.


Assuntos
Caderinas/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Encéfalo/embriologia , Encéfalo/fisiologia , Clonagem Molecular , DNA Complementar/genética , Sistema Digestório/embriologia , Drosophila/genética , Proteínas de Drosophila/genética , Biblioteca Gênica , Humanos , Mamíferos , Dados de Sequência Molecular , Morfogênese , Filogenia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Peixe-Zebra/classificação , Peixe-Zebra/embriologia
2.
Int J Dev Biol ; 46(4): 375-84, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12141423

RESUMO

The Eph and ephrin system, consisting of fourteen Eph receptor tyrosine kinase proteins and nine ephrin membrane proteins in vertebrates, has been implicated in the regulation of many critical events during development. Binding of cell surface Eph and ephrin proteins results in bi-directional signals, which regulate the cytoskeletal, adhesive and motile properties of the interacting cells. Through these signals Eph and ephrin proteins are involved in early embryonic cell movements, which establish the germ layers, cell movements involved in formation of tissue boundaries and the pathfinding of axons. This review focuses on two vertebrate models, the zebrafish and mouse, in which experimental perturbation of Eph and/or ephrin expression in vivo have provided important insights into the role and functioning of the Eph/ephrin system.


Assuntos
Efrinas/metabolismo , Regulação da Expressão Gênica , Receptores da Família Eph/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Axônios , Adesão Celular , Citoesqueleto/metabolismo , Hibridização In Situ , Ligantes , Camundongos , Camundongos Knockout , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...