Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Orphanet J Rare Dis ; 12(1): 49, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28279226

RESUMO

BACKGROUND: The PGC-1α/PPAR axis has been proposed as a potential therapeutic target for several metabolic disorders. The aim was to evaluate the efficacy of the pan-PPAR agonist, bezafibrate, in tafazzin knockdown mice (TazKD), a mouse model of Barth syndrome that exhibits age-dependent dilated cardiomyopathy with left ventricular (LV) dysfunction. RESULTS: The effect of bezafibrate on cardiac function was evaluated by echocardiography in TazKD mice with or without beta-adrenergic stress. Adrenergic stress by chronic isoproterenol infusion exacerbates the cardiac phenotype in TazKD mice, significantly depressing LV systolic function by 4.5 months of age. Bezafibrate intake over 2 months substantially ameliorates the development of LV systolic dysfunction in isoproterenol-stressed TazKD mice. Without beta-adrenergic stress, TazKD mice develop dilated cardiomyopathy by 7 months of age. Prolonged treatment with suprapharmacological dose of bezafibrate (0.5% in rodent diet) over a 4-month period effectively prevented LV dilation in mice isoproterenol treatment. Bezafibrate increased mitochondrial biogenesis, however also promoted oxidative stress in cardiomyocytes. Surprisingly, improvement of systolic function in bezafibrate-treated mice was accompanied with simultaneous reduction of cardiolipin content and increase of monolysocardiolipin levels in cardiac muscle. CONCLUSIONS: Thus, we demonstrate that bezafibrate has a potent therapeutic effect on preventing cardiac dysfunction in a mouse model of Barth syndrome with obvious implications for treating the human disease. Additional studies are needed to assess the potential benefits of PPAR agonists in humans with Barth syndrome.


Assuntos
Síndrome de Barth/tratamento farmacológico , Bezafibrato/uso terapêutico , Cardiomiopatias/tratamento farmacológico , Receptores Ativados por Proliferador de Peroxissomo/agonistas , Animais , Síndrome de Barth/metabolismo , Western Blotting , Cardiolipinas/metabolismo , Cardiomiopatias/metabolismo , Modelos Animais de Doenças , Ecocardiografia , Feminino , Masculino , Camundongos , Reação em Cadeia da Polimerase
2.
Antioxid Redox Signal ; 27(1): 57-69, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27604998

RESUMO

AIMS: Mitochondrial supercomplexes (SCs) are the large supramolecular assembly of individual electron transport chain (ETC) complexes that apparently provide highly efficient ATP synthesis and reduce electron leakage and reactive oxygen species (ROS) production. Oxidative stress during cardiac ischemia-reperfusion (IR) can result in degradation of SCs through oxidation of cardiolipin (CL). Also, IR induces calcium overload and enhances reactive oxygen species (mitROS) in mitochondria that result in the opening of the nonselective permeability transition pores (PTP). The opening of the PTP further compromises cellular energetics and increases mitROS ultimately leading to cell death. Here, we examined the role of PTP-induced mitROS in disintegration of SCs during cardiac IR. The relationship between mitochondrial PTP, ROS, and SCs was investigated using Langendorff-perfused rat hearts subjected to global ischemia (25 min) followed by short-time (5 min) or long-time (60 min) reperfusion in the presence or absence of the PTP inhibitor, sanglifehrin A (SfA), and the mitochondrial targeted ROS and electron scavenger, XJB-5-131. Also, the effects of CL deficiency on SC degradation, PTP, and mitROS were investigated in tafazzin knockdown (TazKD) mice. RESULTS: Cardiac IR induced PTP opening and mitROS generation, inhibited by SfA. Percent distributions of SCs were significantly affected by IR, and the effects were dependent on the reperfusion time and reversed by SfA and XJB-5-131. TazKD mice demonstrated a 40% lower SC I + III+IV with reduced basal mitochondrial PTP, ROS, and ETC complex activity. Innovation and Conclusion: Sustained reperfusion after cardiac ischemia induces disintegration of mitochondrial SCs, and PTP-induced ROS presumably play a causal role in SC disassembly. Antioxid. Redox Signal. 27, 57-69.


Assuntos
Transporte de Elétrons , Mitocôndrias Cardíacas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Animais , Óxidos N-Cíclicos/farmacologia , Modelos Animais de Doenças , Feminino , Lactonas/farmacologia , Masculino , Poro de Transição de Permeabilidade Mitocondrial , Estresse Oxidativo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Compostos de Espiro/farmacologia
3.
PLoS One ; 10(6): e0128561, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26030409

RESUMO

Cardiolipin (CL) is a mitochondrial phospholipid essential for electron transport chain (ETC) integrity. CL-deficiency in humans is caused by mutations in the tafazzin (Taz) gene and results in a multisystem pediatric disorder, Barth syndrome (BTHS). It has been reported that tafazzin deficiency destabilizes mitochondrial respiratory chain complexes and affects supercomplex assembly. The aim of this study was to investigate the impact of Taz-knockdown on the mitochondrial proteomic landscape and metabolic processes, such as stability of respiratory chain supercomplexes and their interactions with fatty acid oxidation enzymes in cardiac muscle. Proteomic analysis demonstrated reduction of several polypeptides of the mitochondrial respiratory chain, including Rieske and cytochrome c1 subunits of complex III, NADH dehydrogenase alpha subunit 5 of complex I and the catalytic core-forming subunit of F0F1-ATP synthase. Taz gene knockdown resulted in upregulation of enzymes of folate and amino acid metabolic pathways in heart mitochondria, demonstrating that Taz-deficiency causes substantive metabolic remodeling in cardiac muscle. Mitochondrial respiratory chain supercomplexes are destabilized in CL-depleted mitochondria from Taz knockdown hearts resulting in disruption of the interactions between ETC and the fatty acid oxidation enzymes, very long-chain acyl-CoA dehydrogenase and long-chain 3-hydroxyacyl-CoA dehydrogenase, potentially affecting the metabolic channeling of reducing equivalents between these two metabolic pathways. Mitochondria-bound myoglobin was significantly reduced in Taz-knockdown hearts, potentially disrupting intracellular oxygen delivery to the oxidative phosphorylation system. Our results identify the critical pathways affected by the Taz-deficiency in mitochondria and establish a future framework for development of therapeutic options for BTHS.


Assuntos
Síndrome de Barth/metabolismo , Síndrome de Barth/patologia , Coração/fisiologia , Redes e Vias Metabólicas/fisiologia , Miocárdio/metabolismo , Acil-CoA Desidrogenase de Cadeia Longa/metabolismo , Aciltransferases , Animais , Cardiolipinas/metabolismo , Modelos Animais de Doenças , Complexo I de Transporte de Elétrons/metabolismo , Técnicas de Silenciamento de Genes/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Fosforilação Oxidativa , Fosfolipídeos/metabolismo , Proteômica/métodos , Fatores de Transcrição/metabolismo
4.
Am J Physiol Heart Circ Physiol ; 306(3): H326-38, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24285112

RESUMO

The very long-chain acyl-CoA dehydrogenase (VLCAD) enzyme catalyzes the first step of mitochondrial ß-oxidation. Patients with VLCAD deficiency present with hypoketotic hypoglycemia and cardiomyopathy, which can be exacerbated by fasting and/or cold stress. Global VLCAD knockout mice recapitulate these phenotypes: mice develop cardiomyopathy, and cold exposure leads to rapid hypothermia and death. However, the contribution of different tissues to development of these phenotypes has not been studied. We generated cardiac-specific VLCAD-deficient (cVLCAD(-/-)) mice by Cre-mediated ablation of the VLCAD in cardiomyocytes. By 6 mo of age, cVLCAD(-/-) mice demonstrated increased end-diastolic and end-systolic left ventricular dimensions and decreased fractional shortening. Surprisingly, selective VLCAD gene ablation in cardiomyocytes was sufficient to evoke severe cold intolerance in mice who rapidly developed severe hypothermia, bradycardia, and markedly depressed cardiac function in response to fasting and cold exposure (+5°C). We conclude that cardiac-specific VLCAD deficiency is sufficient to induce cold intolerance and cardiomyopathy and is associated with reduced ATP production. These results provide strong evidence that fatty acid oxidation in myocardium is essential for maintaining normal cardiac function under these stress conditions.


Assuntos
Acil-CoA Desidrogenase de Cadeia Longa/deficiência , Cardiomiopatia Dilatada/enzimologia , Hipotermia/enzimologia , Trifosfato de Adenosina/metabolismo , Animais , Cardiomiopatia Dilatada/etiologia , Cardiomiopatia Dilatada/metabolismo , Temperatura Baixa , Síndrome Congênita de Insuficiência da Medula Óssea , Modelos Animais de Doenças , Hipotermia/etiologia , Hipotermia/metabolismo , Erros Inatos do Metabolismo Lipídico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças Mitocondriais , Doenças Musculares , Oxirredução , Estresse Fisiológico
5.
Front Physiol ; 4: 74, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23616771

RESUMO

The phospholipid, cardiolipin, is essential for maintaining mitochondrial structure and optimal function. Cardiolipin-deficiency in humans, Barth syndrome, is characterized by exercise intolerance, dilated cardiomyopathy, neutropenia, and 3-methyl-glutaconic aciduria. The causative gene is the mitochondrial acyl-transferase, tafazzin, that is essential for remodeling acyl chains of cardiolipin. We sought to determine metabolic rates in tafazzin-deficient mice during resting and exercise, and investigate the impact of cardiolipin-deficiency on mitochondrial respiratory chain activities. Tafazzin-knockdown in mice markedly impaired oxygen consumption rates during an exercise, without any significant effect on resting metabolic rates. CL-deficiency resulted in significant reduction of mitochondrial respiratory reserve capacity in neonatal cardiomyocytes that is likely to be caused by diminished activity of complex-III, which requires CL for its assembly and optimal activity. Our results may provide mechanistic insights of Barth syndrome pathogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...