Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
mSphere ; 9(6): e0008124, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38837404

RESUMO

In a healthy colon, the stratified mucus layer serves as a crucial innate immune barrier to protect the epithelium from microbes. Mucins are complex glycoproteins that serve as a nutrient source for resident microflora and can be exploited by pathogens. We aimed to understand how the intestinal pathogen, Clostridioides difficile, independently uses or manipulates mucus to its benefit, without contributions from members of the microbiota. Using a 2-D primary human intestinal epithelial cell model to generate physiologic mucus, we assessed C. difficile-mucus interactions through growth assays, RNA-Seq, biophysical characterization of mucus, and contextualized metabolic modeling. We found that host-derived mucus promotes C. difficile growth both in vitro and in an infection model. RNA-Seq revealed significant upregulation of genes related to central metabolism in response to mucus, including genes involved in sugar uptake, the Wood-Ljungdahl pathway, and the glycine cleavage system. In addition, we identified differential expression of genes related to sensing and transcriptional control. Analysis of mutants with deletions in highly upregulated genes reflected the complexity of C. difficile-mucus interactions, with potential interplay between sensing and growth. Mucus also stimulated biofilm formation in vitro, which may in turn alter the viscoelastic properties of mucus. Context-specific metabolic modeling confirmed differential metabolism and the predicted importance of enzymes related to serine and glycine catabolism with mucus. Subsequent growth experiments supported these findings, indicating mucus is an important source of serine. Our results better define responses of C. difficile to human gastrointestinal mucus and highlight flexibility in metabolism that may influence pathogenesis. IMPORTANCE: Clostridioides difficile results in upward of 250,000 infections and 12,000 deaths annually in the United States. Community-acquired infections continue to rise, and recurrent disease is common, emphasizing a vital need to understand C. difficile pathogenesis. C. difficile undoubtedly interacts with colonic mucus, but the extent to which the pathogen can independently respond to and take advantage of this niche has not been explored extensively. Moreover, the metabolic complexity of C. difficile remains poorly understood but likely impacts its capacity to grow and persist in the host. Here, we demonstrate that C. difficile uses native colonic mucus for growth, indicating C. difficile possesses mechanisms to exploit the mucosal niche. Furthermore, mucus induces metabolic shifts and biofilm formation in C. difficile, which has potential ramifications for intestinal colonization. Overall, our work is crucial to better understand the dynamics of C. difficile-mucus interactions in the context of the human gut.


Assuntos
Biofilmes , Clostridioides difficile , Regulação Bacteriana da Expressão Gênica , Muco , Clostridioides difficile/genética , Clostridioides difficile/fisiologia , Clostridioides difficile/metabolismo , Biofilmes/crescimento & desenvolvimento , Humanos , Muco/microbiologia , Muco/metabolismo , Células Epiteliais/microbiologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo , Infecções por Clostridium/microbiologia
2.
bioRxiv ; 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38352512

RESUMO

In a healthy colon, the stratified mucus layer serves as a crucial innate immune barrier to protect the epithelium from microbes. Mucins are complex glycoproteins that serve as a nutrient source for resident microflora and can be exploited by pathogens. We aimed to understand how the intestinal pathogen, Clostridioides diffiicile, independently uses or manipulates mucus to its benefit, without contributions from members of the microbiota. Using a 2-D primary human intestinal epithelial cell model to generate physiologic mucus, we assessed C. difficile-mucus interactions through growth assays, RNA-Seq, biophysical characterization of mucus, and contextualized metabolic modeling. We found that host-derived mucus promotes C. difficile growth both in vitro and in an infection model. RNA-Seq revealed significant upregulation of genes related to central metabolism in response to mucus, including genes involved in sugar uptake, the Wood-Ljungdahl pathway, and the glycine cleavage system. In addition, we identified differential expression of genes related to sensing and transcriptional control. Analysis of mutants with deletions in highly upregulated genes reflected the complexity of C. difficile-mucus interactions, with potential interplay between sensing and growth. Mucus also stimulated biofilm formation in vitro, which may in turn alter viscoelastic properties of mucus. Context-specific metabolic modeling confirmed differential metabolism and predicted importance of enzymes related to serine and glycine catabolism with mucus. Subsequent growth experiments supported these findings, indicating mucus is an important source of serine. Our results better define responses of C. difficile to human gastrointestinal mucus and highlight a flexibility in metabolism that may influence pathogenesis.

3.
bioRxiv ; 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37609255

RESUMO

Fecal Microbiota Transplant (FMT) is an emerging therapy that has had remarkable success in treatment and prevention of recurrent Clostridioides difficile infection (rCDI). FMT has recently been associated with adverse outcomes such as inadvertent transfer of antimicrobial resistance, necessitating development of more targeted bacteriotherapies. To address this challenge, we developed a novel systems biology pipeline to identify candidate probiotic strains that would be predicted to interrupt C. difficile pathogenesis. Utilizing metagenomic characterization of human FMT donor samples, we identified those metabolic pathways most associated with successful FMTs and reconstructed the metabolism of encoding species to simulate interactions with C. difficile . This analysis resulted in predictions of high levels of cross-feeding for amino acids in species most associated with FMT success. Guided by these in silico models, we assembled consortia of bacteria with increased amino acid cross-feeding which were then validated in vitro . We subsequently tested the consortia in a murine model of CDI, demonstrating total protection from severe CDI through decreased toxin levels, recovered gut microbiota, and increased intestinal eosinophils. These results support the novel framework that amino acid cross-feeding is likely a critical mechanism in the initial resolution of CDI by FMT. Importantly, we conclude that our predictive platform based on predicted and testable metabolic interactions between the microbiota and C. difficile led to a rationally designed biotherapeutic framework that may be extended to other enteric infections.

4.
PLoS Comput Biol ; 19(4): e1011076, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37099624

RESUMO

Clostridioides difficile pathogenesis is mediated through its two toxin proteins, TcdA and TcdB, which induce intestinal epithelial cell death and inflammation. It is possible to alter C. difficile toxin production by changing various metabolite concentrations within the extracellular environment. However, it is unknown which intracellular metabolic pathways are involved and how they regulate toxin production. To investigate the response of intracellular metabolic pathways to diverse nutritional environments and toxin production states, we use previously published genome-scale metabolic models of C. difficile strains CD630 and CDR20291 (iCdG709 and iCdR703). We integrated publicly available transcriptomic data with the models using the RIPTiDe algorithm to create 16 unique contextualized C. difficile models representing a range of nutritional environments and toxin states. We used Random Forest with flux sampling and shadow pricing analyses to identify metabolic patterns correlated with toxin states and environment. Specifically, we found that arginine and ornithine uptake is particularly active in low toxin states. Additionally, uptake of arginine and ornithine is highly dependent on intracellular fatty acid and large polymer metabolite pools. We also applied the metabolic transformation algorithm (MTA) to identify model perturbations that shift metabolism from a high toxin state to a low toxin state. This analysis expands our understanding of toxin production in C. difficile and identifies metabolic dependencies that could be leveraged to mitigate disease severity.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Enterotoxinas/metabolismo , Clostridioides/metabolismo , Proteínas de Bactérias/metabolismo
5.
Sci Rep ; 13(1): 203, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604447

RESUMO

Crohn's disease (CD) is a chronic inflammatory disease of the gastrointestinal tract. A clear gap in our existing CD diagnostics and current disease management approaches is the lack of highly specific biomarkers that can be used to streamline or personalize disease management. Comprehensive profiling of metabolites holds promise; however, these high-dimensional profiles need to be reduced to have relevance in the context of CD. Machine learning approaches are optimally suited to bridge this gap in knowledge by contextualizing the metabolic alterations in CD using genome-scale metabolic network reconstructions. Our work presents a framework for studying altered metabolic reactions between patients with CD and controls using publicly available transcriptomic data and existing gene-driven metabolic network reconstructions. Additionally, we apply the same methods to patient-derived ileal enteroids to explore the utility of using this experimental in vitro platform for studying CD. Furthermore, we have piloted an untargeted metabolomics approach as a proof-of-concept validation strategy in human ileal mucosal tissue. These findings suggest that in silico metabolic modeling can potentially identify pathways of clinical relevance in CD, paving the way for the future discovery of novel diagnostic biomarkers and therapeutic targets.


Assuntos
Doença de Crohn , Humanos , Doença de Crohn/metabolismo , Biomarcadores/metabolismo , Metabolômica , Redes e Vias Metabólicas , Perfilação da Expressão Gênica
6.
JPEN J Parenter Enteral Nutr ; 46(8): 1903-1913, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35285019

RESUMO

BACKGROUND: Parenteral nutrition-associated cholestasis (PNAC) in the neonatal intensive care unit (NICU) causes significant morbidity and associated healthcare costs. Laboratory detection of PNAC currently relies on elevated serum conjugated bilirubin levels in the aftermath of impaired bile flow. Here, we sought to identify fecal biomarkers, which when integrated with clinical data, would better predict risk for developing PNAC. METHODS: Using untargeted metabolomics in 200 serial stool samples from 60 infants, we applied statistical and machine learning approaches to identify clinical features and metabolic biomarkers with the greatest associative potential for risk of developing PNAC. Stools were collected prospectively from infants receiving PN with soybean oil-based lipid emulsion at a level IV NICU. RESULTS: Low birth weight, extreme prematurity, longer duration of PN, and greater number of antibiotic courses were all risk factors for PNAC (P < 0.05). We identified 78 stool biomarkers with early predictive potential (P < 0.05). From these 78 biomarkers, we further identified 12 sphingomyelin lipids with high association for the development of PNAC in precholestasis stool samples when combined with birth anthropometry. CONCLUSION: We demonstrate the potential for stool metabolomics to enhance early identification of PNAC risk. Earlier detection of high-risk infants would empower proactive mitigation with alterations to PN for at-risk infants and optimization of energy nutrition with PN for infants at lower risk.


Assuntos
Colestase , Unidades de Terapia Intensiva Neonatal , Recém-Nascido , Lactente , Humanos , Nutrição Parenteral/efeitos adversos , Esfingolipídeos , Colestase/diagnóstico , Colestase/etiologia , Colestase/terapia , Biomarcadores
7.
mSystems ; 6(5): e0091921, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34609164

RESUMO

The pathogen Clostridioides difficile causes toxin-mediated diarrhea and is the leading cause of hospital-acquired infection in the United States. Due to growing antibiotic resistance and recurrent infection, targeting C. difficile metabolism presents a new approach to combat this infection. Genome-scale metabolic network reconstructions (GENREs) have been used to identify therapeutic targets and uncover properties that determine cellular behaviors. Thus, we constructed C. difficile GENREs for a hypervirulent isolate (strain [str.] R20291) and a historic strain (str. 630), validating both with in vitro and in vivo data sets. Growth simulations revealed significant correlations with measured carbon source usage (positive predictive value [PPV] ≥ 92.7%), and single-gene deletion analysis showed >89.0% accuracy. Next, we utilized each GENRE to identify metabolic drivers of both sporulation and biofilm formation. Through contextualization of each model using transcriptomes generated from in vitro and infection conditions, we discovered reliance on the pentose phosphate pathway as well as increased usage of cytidine and N-acetylneuraminate when virulence expression is reduced, which was subsequently supported experimentally. Our results highlight the ability of GENREs to identify novel metabolite signals in higher-order phenotypes like bacterial pathogenesis. IMPORTANCE Clostridioides difficile has become the leading single cause of hospital-acquired infections. Numerous studies have demonstrated the importance of specific metabolic pathways in aspects of C. difficile pathophysiology, from initial colonization to regulation of virulence factors. In the past, genome-scale metabolic network reconstruction (GENRE) analysis of bacteria has enabled systematic investigation of the genetic and metabolic properties that contribute to downstream virulence phenotypes. With this in mind, we generated and extensively curated C. difficile GENREs for both a well-studied laboratory strain (str. 630) and a more recently characterized hypervirulent isolate (str. R20291). In silico validation of both GENREs revealed high degrees of agreement with experimental gene essentiality and carbon source utilization data sets. Subsequent exploration of context-specific metabolism during both in vitro growth and infection revealed consistent patterns of metabolism which corresponded with experimentally measured increases in virulence factor expression. Our results support that differential C. difficile virulence is associated with distinct metabolic programs related to use of carbon sources and provide a platform for identification of novel therapeutic targets.

8.
J Forensic Sci ; 63(4): 1229-1235, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28973785

RESUMO

Recently, medical examiners reported two cases of a 21-year-old male and 24-year-old male with high amounts of morphine in their blood at autopsy. It was suspected that the decedents ingested lethal amounts of morphine from home-brewed poppy seed tea. No studies to date have investigated opium alkaloid content extracted from poppy seeds by home-brewing methods. Various poppy seed products were purchased from online sources and extracted with four home-brewing methods representative of recipes found on drug user forums. Morphine, codeine, and thebaine were quantified in the tea extracts by liquid chromatography-tandem mass spectrometry using a validated analytical method. Morphine, codeine, and thebaine concentrations from seeds were <1-2788 mg/kg, <1-247.6 mg/kg, and <1-124 mg/kg, respectively. Alkaloid yield varied between extractions, but regardless of extraction conditions, lethal amounts of morphine can be rinsed from poppy seed coats by home-brewing methods.


Assuntos
Codeína/análise , Morfina/análise , Papaver , Sementes , Chá/química , Tebaína/análise , Cromatografia Líquida , Toxicologia Forense , Humanos , Masculino , Espectrometria de Massas em Tandem , Adulto Jovem
9.
Circ Cardiovasc Qual Outcomes ; 9(4): 432-40, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27220370

RESUMO

Infants with complex congenital heart disease are at high risk for poor neurodevelopmental outcomes. However, implementation of dedicated congenital heart disease follow-up programs presents important infrastructure, personnel, and resource challenges. We present the development, implementation, and retrospective review of 1- and 2-year outcomes of a Complex Congenital Heart Defect Neurodevelopmental Follow-Up program. This program was a synergistic approach between the Pediatric Cardiology, Cardiothoracic Surgery, Pediatric Intensive Care, and Neonatal Intensive Care Unit Follow-Up teams to provide a feasible and responsible utilization of existing infrastructure and personnel, to develop and implement a program dedicated to children with congenital heart disease. Trained developmental testers administered the Ages and Stages Questionnaire-3 over the phone to the parents of all referred children at least once between 6 and 12 months' corrected age. At 18 months' corrected age, all children were scheduled in the Neonatal Intensive-Care Unit Follow-Up Clinic for a visit with standardized neurological exams, Bayley III, multidisciplinary therapy evaluations and continued follow-up. Of the 132 patients identified in the Cardiothoracic Surgery database and at discharge from the hospital, a total number of 106 infants were reviewed. A genetic syndrome was identified in 23.4% of the population. Neuroimaging abnormalities were identified in 21.7% of the cohort with 12.8% having visibly severe insults. As a result, 23 (26.7%) received first-time referrals for early intervention services, 16 (13.8%) received referrals for new services in addition to their existing ones. We concluded that utilization of existing resources in collaboration with established programs can ensure targeted neurodevelopmental follow-up for all children with complex congenital heart disease.


Assuntos
Serviço Hospitalar de Cardiologia/organização & administração , Desenvolvimento Infantil , Prestação Integrada de Cuidados de Saúde/organização & administração , Cardiopatias Congênitas/terapia , Unidades de Terapia Intensiva Neonatal/organização & administração , Terapia Intensiva Neonatal/organização & administração , Sistema Nervoso/crescimento & desenvolvimento , Equipe de Assistência ao Paciente/organização & administração , Fatores Etários , Serviço Hospitalar de Cardiologia/estatística & dados numéricos , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/fisiopatologia , Deficiências do Desenvolvimento/reabilitação , Intervenção Médica Precoce/organização & administração , Estudos de Viabilidade , Feminino , Serviços de Saúde/estatística & dados numéricos , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/fisiopatologia , Humanos , Lactente , Recém-Nascido , Unidades de Terapia Intensiva Neonatal/estatística & dados numéricos , Terapia Intensiva Neonatal/estatística & dados numéricos , Masculino , Modelos Organizacionais , Exame Neurológico , Ohio , Avaliação de Programas e Projetos de Saúde , Encaminhamento e Consulta/organização & administração , Estudos Retrospectivos , Inquéritos e Questionários , Fatores de Tempo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...