Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Radiat Biol ; 95(7): 1043-1049, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31157572

RESUMO

In the 60 years since the inaugural edition of the International Journal of Radiation Biology, much of our understanding of the biological effects of solar radiation has changed. Earlier in the century, sunlight played a 'hero's' role in reducing disabling rickets, while today debate still continues on the amount of sun required before exposure reveals the 'villainous' side of solar radiation. Although knowledge of the ultra violet (UV) component of sunlight as a carcinogen has become widespread, skin cancer rates are still rising yearly. Twentieth century attitudes have seen an about-face in the field of dermatological sun protection, with sunscreens changing from recipes designed to promote a 'healthy tan' to formulations proven to block both ultraviolet B (UVB) and more recently, ultraviolet A (UVA), to minimize premature sun-aging and skin cancer risk. In the early 1960s, DNA was first found to exist within mitochondria, while recently the connections between mitochondrial changes and UV radiation exposure have been expanded. Sixty years ago, understanding of the endocrine systems of mammals was enjoying its infancy. Early discoveries that light, particularly natural light, could have profound effects on functions such as sleep patterns and hormonal balance were made, while today more advanced knowledge has led to lighting improvements having pronounced effects on human wellbeing. Photosensitization 60 years ago was a health concern for both humans and their domestic animals, while today chemically engineered photosensitizing drugs can be administered along with highly directed light to pinpoint delivery targets for drug action. Life on earth is inextricably bound up with solar radiation. This article attempts to outline many of the ways in which our opinions about solar radiation have changed since the journal's inception.


Assuntos
Radiobiologia/história , Luz Solar , Raios Ultravioleta , Animais , DNA/efeitos da radiação , Dano ao DNA , DNA Mitocondrial/metabolismo , História do Século XX , História do Século XXI , Humanos , Saúde Mental , Mitocôndrias/efeitos da radiação , Neoplasias/etiologia , Neoplasias/radioterapia , Fármacos Fotossensibilizantes , Raquitismo/radioterapia , Pele/efeitos da radiação , Envelhecimento da Pele/efeitos da radiação , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/radioterapia , Vitamina D/metabolismo
2.
J Photochem Photobiol B ; 173: 397-403, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28649007

RESUMO

Most somatic cells contain many copies of mitochondrial DNA (mtDNA). Because of both the high copy number and the lack of repair mechanisms available to mtDNA, damage to it largely goes unrepaired, and can accumulate over time. Large scale deletions are a recognised type of damage sustained by mtDNA as a consequence of exposure to the ultraviolet light in sunlight. A group of patients were identified as having abnormally high levels of either a 4977 base pair deletion (mtDNA4977) or 3895 base pair deletion (mtDNA3895), in mtDNA from sun exposed skin or skin suspected to be a non-melanoma skin cancer, but not in their non-sun exposed skin biopsies. In three of the four cases, skin cancer was ruled out due to histological testing. Additional factors from these patients' medical histories were studied, and it was noted that they shared diagnoses for multiple pathologies common to an older population, and that they were being treated with the same or related pharmaceuticals, including some that had been known to cause dermal side effects. Investigation into the biochemistry underlying the symptoms, the effects of sun exposure and side effects of the prescribed pharmaceuticals revealed a possible synergistic relationship leading to the localised high levels of mtDNA deletions.


Assuntos
DNA Mitocondrial/genética , Mitocôndrias/efeitos da radiação , Pele/efeitos da radiação , Raios Ultravioleta , Idoso , Alopurinol/farmacologia , Atorvastatina/farmacologia , Bisoprolol/farmacologia , Colesterol/química , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , DNA Mitocondrial/metabolismo , Deleção de Genes , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Perindopril/farmacologia , Pravastatina/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Pele/efeitos dos fármacos , Pele/patologia , Ubiquinona/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...