Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Physiol ; 601(23): 5367-5389, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37883018

RESUMO

Two KCNA2 variants (p.H310Y and p.H310R) were discovered in paediatric patients with epilepsy and developmental delay. KCNA2 encodes KV 1.2-channel subunits, which regulate neuronal excitability. Both gain and loss of KV 1.2 function cause epilepsy, precluding the prediction of variant effects; and while H310 is conserved throughout the KV -channel superfamily, it is largely understudied. We investigated both variants in heterologously expressed, human KV 1.2 channels by immunocytochemistry, electrophysiology and voltage-clamp fluorometry. Despite affecting the same channel, at the same position, and being associated with severe neurological disease, the two variants had diametrically opposite effects on KV 1.2 functional expression. The p.H310Y variant produced 'dual gain of function', increasing both cell-surface trafficking and activity, delaying channel closure. We found that the latter is due to the formation of a hydrogen bond that stabilizes the active state of the voltage-sensor domain. Additionally, H310Y abolished 'ball and chain' inactivation of KV 1.2 by KV ß1 subunits, enhancing gain of function. In contrast, p.H310R caused 'dual loss of function', diminishing surface levels by multiple impediments to trafficking and inhibiting voltage-dependent channel opening. We discuss the implications for KV -channel biogenesis and function, an emergent hotspot for disease-associated variants, and mechanisms of epileptogenesis. KEY POINTS: KCNA2 encodes the subunits of KV 1.2 voltage-activated, K+ -selective ion channels, which regulate electrical signalling in neurons. We characterize two KCNA2 variants from patients with developmental delay and epilepsy. Both variants affect position H310, highly conserved in KV channels. The p.H310Y variant caused 'dual gain of function', increasing both KV 1.2-channel activity and the number of KV 1.2 subunits on the cell surface. H310Y abolished 'ball and chain' (N-type) inactivation of KV 1.2 by KV ß1 subunits, enhancing the gain-of-function phenotype. The p.H310R variant caused 'dual loss of function', diminishing the presence of KV 1.2 subunits on the cell surface and inhibiting voltage-dependent channel opening. As H310Y stabilizes the voltage-sensor active conformation and abolishes N-type inactivation, it can serve as an investigative tool for functional and pharmacological studies.


Assuntos
Epilepsia , Humanos , Criança , Epilepsia/genética , Neurônios/fisiologia , Transdução de Sinais , Membrana Celular , Fenótipo , Canal de Potássio Kv1.2/genética
2.
Int J Mol Sci ; 23(5)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35269942

RESUMO

Nuclear receptors (NRs), are a wide family of ligand-regulated transcription factors sharing a common modular structure composed by an N-terminal domain and a ligand-binding domain connected by a short hinge linker to a DNA-binding domain. NRs are involved in many physiological processes, including metabolism, reproduction and development. Most of them respond to small lipophilic ligands, such as steroids, retinoids, and phospholipids, which act as conformational switches. Some NRs are still "orphan" and the search for their ligands is still ongoing. Upon DNA binding, NRs can act both as transcriptional activators or repressors of their target genes. Theoretically, the possibility to modulate NRs activity with small molecules makes them ideal therapeutic targets, although the complexity of their signaling makes drug design challenging. In this review, we discuss the role of NRs in erythropoiesis, in both homeostatic and stress conditions. This knowledge is important in view of modulating red blood cells production in disease conditions, such as anemias, and for the expansion of erythroid cells in culture for research purposes and for reaching the long-term goal of cultured blood for transfusion.


Assuntos
Eritropoese , Receptores Citoplasmáticos e Nucleares , DNA/metabolismo , Ligantes , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...