Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 681: 136-143, 2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-37774571

RESUMO

Drought susceptibility is a major yield limiting factor in agricultural crops especially in hybrids/varieties that have been bred for high yields. We show that manipulation of the SlDREB3 gene in tomato alters ABA responses and thereby sensitivity of stomatal closure to ABA. SlDREB3 suppression lines show ABA hypersensitivity and rapid stomatal closure in response to ABA while over-expression lines show reduced sensitivity to ABA and open stomata even at high ABA levels with rapid water loss after 10 days of water stress. This is accompanied with high ROS levels and increased membrane damage due to senescence of leaves and drastically reduced survival in drought. The relative water content (RWC) of OEx lines is much reduced even when grown under well-watered conditions. In contrast, suppression lines show greater tolerance to water stress and almost complete survival to 10-day water stress. They show much reduced ROS levels, reduced membrane damage, higher RWC and reduced leaf water loss. These changes are associated with higher expression of ABA signalling pathway genes in suppression lines while these are highly reduced in OEx lines. The studies suggest that control of ABA signalling by SlDREB3 can help in withstanding severe drought.

2.
Plant Sci ; 319: 111249, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35487658

RESUMO

SlDREB3 was identified as a ripening up-regulated gene of the AP2/ERF-domain family of transcription factors. Its manipulation affects processes primarily governed by ABA. It negatively regulates ABA responses in tomato by altering ABA levels/signaling and is, in turn, negatively regulated by ABA. SlDREB3 over-expression lines show higher transcript levels of the ABA metabolism genes CYP707A3 and UGT75C1 and an 85% reduction in ABA levels leading to early seed germination. In contrast, suppression lines show decreased CYP707A3/UGT75C1 expression, 3-fold higher ABA levels and delayed germination. The expression of other ABA signaling and response genes is also affected. Suppression of SlDREB3 accelerates the onset of ripening by 4-5 days while its over-expression delays it and also reduces final fruit size. SlDREB3 manipulation effects large scale changes in the fruit transcriptome with suppression lines showing early increase in ABA levels and activation of most ripening pathway genes that govern ethylene, carotenoids and softening. Strikingly, key transcription factors like CNR, NOR, RIN, FUL1, governing ethylene-dependent and ethylene-independent aspects of ripening, are activated early upon SlDREB3 suppression suggesting their control by ABA. The studies identify SlDREB3 as a negative regulator of ABA responses across tissues and a key ripening regulator controlling ethylene-dependent and ethylene-independent aspects.


Assuntos
Solanum lycopersicum , Ácido Abscísico/metabolismo , Etilenos/metabolismo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/genética , Sementes/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...