Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
ACS Omega ; 8(41): 38619-38631, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37867708

RESUMO

Multicomponent reactions involving zwitterion generated from dimethyl acetylenedicarboxylate, aryl sulfonamide, and isocyanide to generate sulfonamide-conjugated ketenimines is reported. The synthetic strategy adopted is highly atom economical and stereoselective. Ketenimine sulfonamide analogues are key intermediates for further synthetic conversions to generate a combinatorial library of compounds. Furthermore, sulfonamide compounds are known to possess a broad spectrum of biological applications. All the novel molecules synthesized exhibit the potential to target the nonhomologous DNA end-joining (NHEJ) pathway with cytotoxic ability. Computational studies compliment the in vitro biological assays of the 8 small-molecule inhibitors. DNA double-strand breaks (DSBs) are considered as the most lethal among different DNA damages. NHEJ repairs about 70% of the DSBs generated in cells within mammals. The DNA-dependent protein kinase catalytic subunit is one of the PI3 kinases associated with NHEJ. Compounds DK01-DK08 were investigated for their ability to induce cancer cell death by treating with two leukemic cell lines where NHEJ is high. Results showed that bromoaryl (DK04)- and nitroaryl (DK05)-conjugated molecules showed excellent biological activity, having IC50 values of ∼2 µM in Nalm6 cell lines.

3.
Contemp Clin Dent ; 14(4): 272-276, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38344162

RESUMO

Objective: The objective of this research is to determine whether the thermoplastic polyurethane (TPU) coated with carboxymethylcellulose chitosan has better mechanical and antibacterial action (anti-Streptococcus mutans) when utilized in intraoral simulations with synthetic saliva. Materials and Methods: The TPU sheets (n = 45) were divided into three groups. Control (n = 15) consists of as-received TPU sheets. Test 1 consists of TPU sheets coated with carboxymethyl cellulose (CMC) chitosan (CHI) (n = 15). Test 2 consists of thermoformed nano-coated TPU (n = 15). For the polyurethane sheets, CHI-CMC sheets, and thermoformed CHI-CMC sheets, scanning electron microscopy (SEM) and three-point flexural tests were conducted and assessed. The materials testing software was used to calculate the elastic modulus and tensile strength. To study the bacterial accumulation, the cut circles of the TPU aligner were placed in centrifuge tubes with 2.5 mL of bacterial suspension at a concentration of 104 or 105 CFU/mL. SEM was done to assess the presence of cell growth in all three groups. Results: According to SEM analyses of bacterial buildup, the coated TPU had minimal biofilms compared to the bare TPUs numerous biofilms. The effect of aging on coating thickness reveals that the thickness of thermoformed coated TPU films dramatically decreased over time, while the thickness of coated TPU films was maintained. When TPU is coated with CMC/CHI, the elastic modulus and tensile strength were observed to improve. Conclusion: The development of a super-hydrophilic coating by the CHI CMC coating on TPU sheets improved the coating's biocompatibility while also changing the shape of the multilayer film to prevent bacterial adhesion. The effect on the improvement in the mechanical properties diminished after the material underwent a thermoforming process. It is therefore suggested that the nanofilm be used in therapeutic applications following the thermoforming process.

4.
Int J Biol Macromol ; 206: 92-104, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35217088

RESUMO

This study aims to extract cellulose nanofibers (CNFs) from a sustainable source, i.e. millet husk, which is an agro-waste worthy of consideration. Pre-treatments such as mercerisation, steam explosion, and peroxide bleaching (chlorine-free) were applied for the removal of non-cellulosic components. The bleached millet husk pulp was subjected to acid hydrolysis (5% oxalic acid) followed by homogenization to extract CNFs. The extracted CNFs were characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Dynamic Light Scattering (DLS), Energy Dispersive X-ray Spectroscopy (EDX), Thermogravimetry (TG and DTG), Differential scanning calorimetry (DSC), and Solid state 13C nuclear magnetic resonance spectroscopy (solid state 13C NMR). The isolated CNFs show a typical cellulose type-I structure with a diameter of 10-12 nm and a crystallinity index of 58.5%. The appearance of the specific peak at 89.31 ppm in the solid state 13C NMR spectra validates the existence of the type-I cellulose phase in the prepared CNFs. The prepared CNFs had a maximum degradation temperature (Tmax) of 341 °C, that was 31 °C greater than raw millet husk (RMH). The outcome of the study implies that the nanofibers are prominent alternatives for synthetic fibers for assorted potential applications, especially in manufacturing green composites.


Assuntos
Nanofibras , Pennisetum , Celulose/química , Milhetes , Nanofibras/química , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
7.
Nature ; 583(7816): 400-405, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32669695

RESUMO

Mechanical interlocking of molecules (catenation) is a nontrivial challenge in modern synthetic chemistry and materials science1,2. One strategy to achieve catenation is the design of pre-annular molecules that are capable of both efficient cyclization and of pre-organizing another precursor to engage in subsequent interlocking3-9. This task is particularly difficult when the annular target is composed of a large ensemble of molecules, that is, when it is a supramolecular assembly. However, the construction of such unprecedented assemblies would enable the visualization of nontrivial nanotopologies through microscopy techniques, which would not only satisfy academic curiosity but also pave the way to the development of materials with nanotopology-derived properties. Here we report the synthesis of such a nanotopology using fibrous supramolecular assemblies with intrinsic curvature. Using a solvent-mixing strategy, we kinetically organized a molecule that can elongate into toroids with a radius of about 13 nanometres. Atomic force microscopy on the resulting nanoscale toroids revealed a high percentage of catenation, which is sufficient to yield 'nanolympiadane'10, a nanoscale catenane composed of five interlocked toroids. Spectroscopic and theoretical studies suggested that this unusually high degree of catenation stems from the secondary nucleation of the precursor molecules around the toroids. By modifying the self-assembly protocol to promote ring closure and secondary nucleation, a maximum catenation number of 22 was confirmed by atomic force microscopy.

8.
Chemistry ; 26(49): 11135-11140, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32428357

RESUMO

Controlled self-organization of organic semiconductor molecules into specifically desired architectures on substrates of interest is one of the most imperative challenges faced in the fabrication of high-performance organic electronic devices. Herein, we report the self-organization of a star-shaped molecule FDT-8 into a highly favored structure, namely, a vertical stack. Thermal annealing of films of FDT-8 deposited on PEDOT: PSS coated ITO substrates was observed to assist the organization of the molecules into columnar stacks. A significant enhancement in the hole (≈50-fold) and the electron (≈13-fold) carrier mobility was observed in single-carrier devices upon thermal annealing that could be attributed to the aforementioned self-organization. The ability of these molecules to spontaneously self-organize was utilized to fabricate bilayer light-emitting devices.

9.
Chemistry ; 26(41): 8997-9004, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32350945

RESUMO

Beyond phenomenon, self-assembly of synthetic molecules, is now becoming an essential tool to design supramolecular materials not only in the thermodynamically stable state but also in kinetically trapped states. However, an approach to design complex self-assembly processes comprising different types of self-assembled states remains elusive. Herein, an example of such systems is demonstrated based on a unique supramolecular polymer mediated by supermacrocyclization of hydrogen-bonding π-conjugated molecules. By adding an aromatic solvent into nonpolar solutions of the monomer, spontaneous nucleation triggered by supermacrocyclization was suppressed so that isothermal supramolecular polymerization could be achieved from kinetically formed topological variants and amorphous agglomerates to afford helicoidal structures hitherto obtainable only with very slow cooling of a hot solution. By increasing the proportion of aromatic solvent further, another self-assembly path was found, based on competing extended hydrogen-bonded motifs affording crystalline nanowires.

10.
Nat Commun ; 10(1): 4578, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31594942

RESUMO

Supramolecular polymers have emerged in the last decade as highly accessible polymeric nanomaterials. An important step toward finely designed nanomaterials with versatile functions, such as those of natural proteins, is intricate topological control over their main chains. Herein, we report the facile one-shot preparation of supramolecular copolymers involving segregated secondary structures. By cooling non-polar solutions containing two monomers that individually afford helically folded and linearly extended secondary structures, we obtain unique nanofibers with coexisting distinct secondary structures. A spectroscopic analysis of the formation process of such topologically chimeric fibers reveals that the monomer composition varies gradually during the polymerization due to the formation of heteromeric hydrogen-bonded intermediates. We further demonstrate the folding of these chimeric fibers by light-induced deformation of the linearly extended segments.

11.
Chem Sci ; 10(3): 752-760, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30746108

RESUMO

Smart light-responsive supramolecular materials have been extensively investigated in the past decade, but so far the impact of metal coordination on hierarchical supramolecular structures of light-responsive building blocks has remained nearly unexplored. Herein, we unravel the hierarchical self-assembly of a small π-conjugated azo-containing pyridyl ligand that is able to respond to UV-light and metal complexation. The ligand self-assembles in an antiparallel fashion into long twisted fibers, which are then disassembled upon photoisomerization of the azobenzene groups, resulting in shorter rigid rods with a different packing motif. Complexation of Pd(ii) ions enhances the cooperativity of the aggregation and induces a molecular rearrangement into slipped stacks with subsequent formation of long thin fibers. These are then transformed into thinner, shorter rods upon light irradiation. The observed different light-responsiveness, besides clearing up the influence of metal coordination and light irradiation in self-assembly processes, paves the way towards the design of novel supramolecular photochromic systems.

12.
Sci Adv ; 4(9): eaat8466, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30202785

RESUMO

Folding one-dimensional polymer chains into well-defined topologies represents an important organization process for proteins, but replicating this process for supramolecular polymers remains a challenging task. We report supramolecular polymers that can fold into protein-like topologies. Our approach is based on curvature-forming supramolecular rosettes, which affords kinetic control over the extent of helical folding in the resulting supramolecular fibers by changing the cooling rate for polymerization. When using a slow cooling rate, we obtained misfolded fibers containing a minor amount of helical domains that folded on a time scale of days into unique topologies reminiscent of the protein tertiary structures. Thermodynamic analysis of fibers with varying degrees of folding revealed that the folding is accompanied by a large enthalpic gain. The self-folding proceeds via ordering of misfolded domains in the main chain using helical domains as templates, as fully misfolded fibers prepared by a fast cooling rate do not self-fold.


Assuntos
Polímeros/química , Barbitúricos/química , Cicloexanos/química , Difusão Dinâmica da Luz , Cinética , Espectroscopia de Ressonância Magnética , Microscopia de Força Atômica , Polimerização , Estrutura Terciária de Proteína , Espalhamento a Baixo Ângulo , Espectrofotometria Ultravioleta , Termodinâmica , Difração de Raios X
13.
J Phys Chem B ; 121(8): 1922-1929, 2017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28170256

RESUMO

Herein, we report the synthesis, self-assembly, and electroluminescence characteristics of a new green-emitting, pseudodiscoid chiral molecule, OXDC, containing an electron-donating stilbene core and an electron-accepting oxadiazole substituent. The helical organization and specific interaction of the chiral pseudodiscoid molecule resulted in the formation of self-assembled nanofibers with a columnar superstructure. Macroscopic chirality was observed in both the liquid-crystalline phases and the self-assembled nanofibers of OXDC, a feature which was absent in the analogous achiral oxadiazole derivative reported earlier [ Sivadas , A. P. ; Supergelation via Purely Aromatic π-π Driven Self-Assembly of Pseudodiscotic Oxadiazole Mesogens . J. Am. Chem. Soc. 2014 , 136 , 5416 - 5423 ]. A high-performance organic light-emitting device was demonstrated using OXDC as the emitting material, with a luminous intensity of 10 115 cd m-2 at 5 V and chromaticity coordinates of (0.32, 0.51).

14.
Chemistry ; 23(22): 5270-5280, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28120455

RESUMO

Intricately designed π-conjugated molecules containing interactive groups can be used to generate supramolecular polymers with outstanding structural and functional properties. To construct such supramolecular polymers, the non-covalent synthesis of supermacrocyclic monomers from relatively simple molecules represents an attractive strategy, although this has been rarely exploited. Here, we report the supramolecular polymerization of two barbiturate-naphthalene derivatives that circularly hexamerize by hydrogen bonding. The two molecules contain an aliphatic "wedge" unit with either an ether or ester linkage. This subtle difference is amplified into distinct features both in terms of the morphology of the supramolecular polymers and the polymerization process. The degrees of conformational freedom of the wedge unit determine the stacking of the supermacrocycles, as is evident from 2D X-ray diffraction analyses on the aligned fibers. The differences in stacking impart the supramolecular polymer fibers with different morphological features (cylindrical or helical), which are reflected in the properties of concentrated solutions (suspension or gel). The degrees of conformational freedom of the wedge unit also affect the polymerization kinetics, in which the more flexible ether linkage induces pathway complexity by the formation of off-pathway aggregates.

15.
Chem Commun (Camb) ; 53(1): 168-171, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27909703

RESUMO

An alkylene-tethered perylene bisimide (PBI) dyad with hydrophilic substituents forms helical supramolecular polymers that can be visualized by AFM in THF-water mixtures. The supramolecular polymers also form thixotropic gel-like lyotropic mesophases in the mixtures.

16.
Chem Commun (Camb) ; 52(50): 7874-7, 2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27251116

RESUMO

Benzodithiophene-functionalized oligothiophene with barbituric acid hydrogen-bonding unit self-assembles into nanoscopic structures via the formation of rosettes. The nanostructures show a power conversion efficiency of 3% upon mixing with PC61BM in bulk-heterojunction solar cells without thermal annealing.

17.
Chem Commun (Camb) ; 52(53): 8211-4, 2016 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-27211509

RESUMO

The self-assembly of two regioisomeric hydrogen-bonding naphthalenes was studied in mixed states in different polarity solvents. The regioisomers co-assemble to form heteromeric rosettes in chloroform. Upon injecting this solution into methylcyclohexane the heteromeric rosettes kinetically form amorphous aggregates, which over time differentiate into thermodynamically stable distinct nanostructures through self-sorting.

18.
Phys Chem Chem Phys ; 17(28): 18768-79, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26118371

RESUMO

Detailed photophysical properties of cyano and mono (MA)/bis alkoxy (DA) substituted diphenylacetylene moieties with different alkyl chain lengths (methyl (1), octyl (8) and dodecyl (12)) were investigated in solution and the solid state in an effort to determine the effect of self-aggregation on these properties. The solvated molecules showed a minimal bathochromic shift with an increase of solvent polarity in their absorption spectra, whereas a significant shift was observed in the emission spectra. This could be attributed to the relatively low change in dipole moment between ground and Franck-Condon excited states and luminescence arising from the intramolecular charge transfer state with a dipole moment significantly higher than that of the ground state. In solid state the emission quantum yields of these materials were significantly higher than in solution. For DA1, polymorphic materials with distinct photophysical properties were obtained. The DA1 materials obtained by fast precipitation (DA1) showed broad fluorescence with peaks at 398, 467 and 535 nm upon excitation at different wavelengths. Detailed analysis of absorption, emission and excitation spectra and lifetime experiments indicated that these peaks could be attributed to the monomer, J- and H-type aggregates respectively. Whereas the crystals obtained by slow crystallization (DA1C) showed only one emission peak at around 396 nm attributed to the monomer. This is supported by the single crystal X-ray structure which consists of a monomer molecule having minimal interaction with nearest neighbour molecules.


Assuntos
Acetileno/análogos & derivados , Acetileno/química , Cristalografia por Raios X , Elétrons , Conformação Molecular , Teoria Quântica , Soluções/química , Espectrometria de Fluorescência
19.
J Am Chem Soc ; 136(14): 5416-23, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24627982

RESUMO

A series of highly luminescent oxadiazole-based stilbene molecules (OXD4, OXD8, OXD10, and OXD12) exhibiting interesting enantiotropic liquid crystalline and gelation properties have been synthesized and characterized. The molecules possessing longer alkyl substituents, OXD10 and OXD12, possess a pseudodisc shape and are capable of behaving as supergelators in nonpolar solvents, forming self-standing gels with very high thermal and mechanical stability. Notably the self-assembly of these molecules, which do not possess any hydrogen-bonding motifs normally observed in most reported supergelators, is driven purely by π-stacking interactions of the constituent molecules. The d-spacing ratios estimated from XRD analysis of OXD derivatives possessing longer alkyl chains show that the molecules are arranged in a columnar fashion in the mesogens and the self-assembled nanofibers formed in the gelation process.

20.
J Phys Chem B ; 116(43): 13071-80, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23046253

RESUMO

Star-shaped molecules consisting of a 1,3,4-oxadiazole core derivatized with alkoxy-substituted phenyl ethynylenes, FD12 (dodecyl) and FD16 (hexadecyl) were synthesized. These molecules exhibited enantiotropic columnar mesophases over a wide temperature range, with the liquid crystalline phases exhibiting strong blue fluorescence. On cooling, FD12 transformed into a transparent glass at room temperature wherein the liquid crystalline texture was retained. The glassy film remained stable over a period of one year and exhibited blue luminescence with an absolute quantum yield of 26%. The oxadiazole derivatives formed stable luminescent gels in decane and study of their morphology by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) indicated formation of interlocked network of self-assembled fibers. X-ray diffraction (XRD) analysis of the xerogel of these derivatives indicated oblique columnar ordering of the molecules within the fibers. The length of the alkyl substituent was observed to have a significant effect on the absorption and fluorescence properties of the gels, which was attributable to the role of the alkyl substituents in controlling the nature of the molecular packing within the self -assembled fibers of the gels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...