Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
medRxiv ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38978642

RESUMO

Pediatric glioma recurrence can cause morbidity and mortality; however, recurrence pattern and severity are heterogeneous and challenging to predict with established clinical and genomic markers. Resultingly, almost all children undergo frequent, long-term, magnetic resonance (MR) brain surveillance regardless of individual recurrence risk. Deep learning analysis of longitudinal MR may be an effective approach for improving individualized recurrence prediction in gliomas and other cancers but has thus far been infeasible with current frameworks. Here, we propose a self-supervised, deep learning approach to longitudinal medical imaging analysis, temporal learning, that models the spatiotemporal information from a patient's current and prior brain MRs to predict future recurrence. We apply temporal learning to pediatric glioma surveillance imaging for 715 patients (3,994 scans) from four distinct clinical settings. We find that longitudinal imaging analysis with temporal learning improves recurrence prediction performance by up to 41% compared to traditional approaches, with improvements in performance in both low- and high-grade glioma. We find that recurrence prediction accuracy increases incrementally with the number of historical scans available per patient. Temporal deep learning may enable point-of-care decision-support for pediatric brain tumors and be adaptable more broadly to patients with other cancers and chronic diseases undergoing surveillance imaging.

2.
Radiol Artif Intell ; : e230254, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984985

RESUMO

"Just Accepted" papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Purpose To develop, externally test, and evaluate clinical acceptability of a deep learning (DL) pediatric brain tumor segmentation model using stepwise transfer learning. Materials and Methods In this retrospective study, the authors leveraged two T2-weighted MRI datasets (May 2001-December 2015) from a national brain tumor consortium (n = 184; median age, 7 years (range: 1-23 years); 94 male) and a pediatric cancer center (n = 100; median age, 8 years (range: 1-19 years); 47 male) to develop and evaluate DL neural networks for pediatric low-grade glioma segmentation using a novel stepwise transfer learning approach to maximize performance in a limited data scenario. The best model was externally-tested on an independent test set and subjected to randomized, blinded evaluation by three clinicians, wherein they assessed clinical acceptability of expert- and artificial intelligence (AI)-generated segmentations via 10-point Likert scales and Turing tests. Results The best AI model used in-domain, stepwise transfer learning (median DSC: 0.88 [IQR 0.72-0.91] versus 0.812 [0.56-0.89] for baseline model; P = .049). On external testing, AI model yielded excellent accuracy using reference standards from three clinical experts (Expert-1: 0.83 [0.75-0.90]; Expert-2: 0.81 [0.70-0.89]; Expert-3: 0.81 [0.68-0.88]; mean accuracy: 0.82)). On clinical benchmarking (n = 100 scans), experts rated AI-based segmentations higher on average compared with other experts (median Likert score: median 9 [IQR 7-9]) versus 7 [IQR 7-9]) and rated more AI segmentations as clinically acceptable (80.2% versus 65.4%). Experts correctly predicted the origin of AI segmentations in an average of 26.0% of cases. Conclusion Stepwise transfer learning enabled expert-level, automated pediatric brain tumor auto-segmentation and volumetric measurement with a high level of clinical acceptability. ©RSNA, 2024.

3.
Brain Dev ; 46(7): 244-249, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38740533

RESUMO

OBJECTIVES: Sturge Weber syndrome (SWS) is a neurovascular condition with an estimated incidence of 1 in 20,000 to 50,000 live births. SWS Types I and II involve cutaneous and ophthalmological findings, with neurological involvement in Type I. SWS Type III is exclusive to brain stigmata. Our study aims to describe the characteristics of brain MRI findings and report neuroradiological features with seizure and cognitive outcomes in patients with SWS Type III. METHODS: This is a retrospective case series examining the clinical, radiological, and cognitive characteristics of patients with SWS Type III referred to the SWS Clinic at Boston Children's Hospital. We analyzed brain MRI findings based on vascular and parenchymal features. Clinical and cognitive outcomes were based on a validated assessment tool in this population (Neuroscore). RESULTS: This dedicated case series of patients with Type III SWS from a single center identified ten patients. All patients had classic stigmata indicative of SWS. Two distinct radiological phenotypes were found, one characterized by more pronounced deep venous enlargement, and the other, with more pronounced parenchymal abnormalities. There was heterogeneity in seizure presentation and outcome. Earlier age of onset and seizures predict more severe outcomes, as seen in classic SWS. CONCLUSION: We could not find significant divergence in outcomes between patients with differing neuroimaging phenotypes. These results raise the question of whether the two distinct radiological phenotypes found in SWS Type III are reflective of different disease entities, with underlying genetic heterogeneity. These results suggest the need for larger, multi-center natural history studies.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Neuroimagem , Convulsões , Síndrome de Sturge-Weber , Humanos , Síndrome de Sturge-Weber/diagnóstico por imagem , Feminino , Masculino , Estudos Retrospectivos , Pré-Escolar , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Criança , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Lactente , Convulsões/diagnóstico por imagem , Convulsões/fisiopatologia , Adolescente
4.
Am J Otolaryngol ; 45(4): 104340, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38723379

RESUMO

OBJECTIVE: Demonstrate the utility of 3D printed temporal bone models in individual patient preoperative planning and simulation. METHODS: 3D models of the temporal bone were made from 5 pediatric and adult patients at a tertiary academic hospital with challenging surgical anatomy planned for cochlear implantation or exteriorization of cholesteatoma with complex labyrinthine fistula. The 3D models were created from CT scan used for preoperative planning, simulation and intraoperative reference. The utility of models was assessed for ease of segmentation and production and impact on surgery in regard to reducing intraoperative time and costs, improving safety and efficacy. RESULTS: Three patients received cochlear implants, two exteriorization of advanced cholesteatoma with fistulas (1 internal auditory canal/cochlea, 1 all three semicircular canals). Surgical planning and intraoperative referencing to the simulations by the attending surgeon and trainees significantly altered original surgical plans. In a case of X-linked hereditary deafness, optimal angles and rotation maneuvers for cochlear implant insertion reduced operating time by 93 min compared to the previous contralateral side surgery. Two cochlear implant cases planned for subtotal petrosectomy approach due to aberrant anatomy were successfully approached through routine mastoidectomy. The cholesteatoma cases were successfully exteriorized without necessitating partial labyrinthectomy or labyrinthine injury. There were no complications. CONCLUSION: 3D printed models for simulation training, surgical planning and use intraoperatively in temporal bone surgery demonstrated significant benefits in designing approaches, development of patient-specific techniques, avoidance of potential or actual complications encountered in previous or current surgery, and reduced surgical time and costs.


Assuntos
Implante Coclear , Impressão Tridimensional , Osso Temporal , Humanos , Osso Temporal/cirurgia , Osso Temporal/diagnóstico por imagem , Implante Coclear/métodos , Masculino , Adulto , Modelos Anatômicos , Tomografia Computadorizada por Raios X , Feminino , Criança , Cuidados Pré-Operatórios/métodos , Adolescente , Pessoa de Meia-Idade , Pré-Escolar
5.
Radiol Artif Intell ; 6(3): e230333, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38446044

RESUMO

Purpose To develop and externally test a scan-to-prediction deep learning pipeline for noninvasive, MRI-based BRAF mutational status classification for pediatric low-grade glioma. Materials and Methods This retrospective study included two pediatric low-grade glioma datasets with linked genomic and diagnostic T2-weighted MRI data of patients: Dana-Farber/Boston Children's Hospital (development dataset, n = 214 [113 (52.8%) male; 104 (48.6%) BRAF wild type, 60 (28.0%) BRAF fusion, and 50 (23.4%) BRAF V600E]) and the Children's Brain Tumor Network (external testing, n = 112 [55 (49.1%) male; 35 (31.2%) BRAF wild type, 60 (53.6%) BRAF fusion, and 17 (15.2%) BRAF V600E]). A deep learning pipeline was developed to classify BRAF mutational status (BRAF wild type vs BRAF fusion vs BRAF V600E) via a two-stage process: (a) three-dimensional tumor segmentation and extraction of axial tumor images and (b) section-wise, deep learning-based classification of mutational status. Knowledge-transfer and self-supervised approaches were investigated to prevent model overfitting, with a primary end point of the area under the receiver operating characteristic curve (AUC). To enhance model interpretability, a novel metric, center of mass distance, was developed to quantify the model attention around the tumor. Results A combination of transfer learning from a pretrained medical imaging-specific network and self-supervised label cross-training (TransferX) coupled with consensus logic yielded the highest classification performance with an AUC of 0.82 (95% CI: 0.72, 0.91), 0.87 (95% CI: 0.61, 0.97), and 0.85 (95% CI: 0.66, 0.95) for BRAF wild type, BRAF fusion, and BRAF V600E, respectively, on internal testing. On external testing, the pipeline yielded an AUC of 0.72 (95% CI: 0.64, 0.86), 0.78 (95% CI: 0.61, 0.89), and 0.72 (95% CI: 0.64, 0.88) for BRAF wild type, BRAF fusion, and BRAF V600E, respectively. Conclusion Transfer learning and self-supervised cross-training improved classification performance and generalizability for noninvasive pediatric low-grade glioma mutational status prediction in a limited data scenario. Keywords: Pediatrics, MRI, CNS, Brain/Brain Stem, Oncology, Feature Detection, Diagnosis, Supervised Learning, Transfer Learning, Convolutional Neural Network (CNN) Supplemental material is available for this article. © RSNA, 2024.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Criança , Masculino , Feminino , Neoplasias Encefálicas/diagnóstico por imagem , Estudos Retrospectivos , Proteínas Proto-Oncogênicas B-raf/genética , Glioma/diagnóstico , Aprendizado de Máquina
6.
Brain ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456468

RESUMO

Inherited glycosylphosphatidylinositol deficiency disorders (IGDs) are a group of rare multisystem disorders arising from pathogenic variants in glycosylphosphatidylinositol anchor pathway (GPI-AP) genes. Despite associating 24 of at least 31 GPI-AP genes with human neurogenetic disease, prior reports are limited to single genes without consideration of the GPI-AP as a whole and with limited natural history data. In this multinational retrospective observational study, we systematically analyse the molecular spectrum, phenotypic characteristics, and natural history of 83 individuals from 75 unique families with IGDs, including 70 newly reported individuals: the largest single cohort to date. Core clinical features were developmental delay or intellectual disability (DD/ID, 90%), seizures (83%), hypotonia (72%), and motor symptoms (64%). Prognostic and biologically significant neuroimaging features included cerebral atrophy (75%), cerebellar atrophy (60%), callosal anomalies (57%), and symmetric restricted diffusion of the central tegmental tracts (60%). Sixty-one individuals had multisystem involvement including gastrointestinal (66%), cardiac (19%), and renal (14%) anomalies. Though dysmorphic features were appreciated in 82%, no single dysmorphic feature had a prevalence >30%, indicating substantial phenotypic heterogeneity. Follow-up data were available for all individuals, 15 of whom were deceased at the time of writing. Median age at seizure onset was 6 months. Individuals with variants in synthesis stage genes of the GPI-AP exhibited a significantly shorter time to seizure onset than individuals with variants in transamidase and remodelling stage genes of the GPI-AP (P=0.046). Forty individuals had intractable epilepsy. The majority of individuals experienced delayed or absent speech (95%); motor delay with non-ambulance (64%); and severe-to-profound DD/ID (59%). Individuals with a developmental epileptic encephalopathy (51%) were at greater risk of intractable epilepsy (P=0.003), non-ambulance (P=0.035), ongoing enteral feeds (P<0.001), and cortical visual impairment (P=0.007). Serial neuroimaging showed progressive cerebral volume loss in 87.5% and progressive cerebellar atrophy in 70.8%, indicating a neurodegenerative process. Genetic analyses identified 93 unique variants (106 total), including 22 novel variants. Exploratory analyses of genotype-phenotype correlations using unsupervised hierarchical clustering identified novel genotypic predictors of clinical phenotype and long-term outcome with meaningful implications for management. In summary, we expand both the mild and severe phenotypic extremities of the IGDs; provide insights into their neurological basis; and, vitally, enable meaningful genetic counselling for affected individuals and their families.

7.
Neuroradiology ; 66(3): 437-441, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38206352

RESUMO

PURPOSE: Nasal chondromesenchymal hamartomas (NCMH) are rare, predominantly benign tumors of the sinonasal tract. The distinction from higher grade malignancy may be challenging based on imaging features alone. To increase the awareness of this entity among radiologists, we present a multi-institutional case series of pediatric NCMH patients showing the varied imaging presentation. METHODS: Descriptive assessment of imaging appearances of the lesions on computed tomography (CT) and magnetic resonance imaging (MRI) was performed. In addition, we reviewed demographic information, clinical data, results of genetic testing, management, and follow-up data. RESULTS: Our case series consisted of 10 patients, with a median age of 0.5 months. Intraorbital and intracranial extensions were both observed in two cases. Common CT findings included bony remodeling, calcifications, and bony erosions. MRI showed heterogeneous expansile lesion with predominantly hyperintense T2 signal and heterogenous post-contrast enhancement in the majority of cases. Most lesions exhibited increased diffusivity on diffusion weighted imaging and showed signal drop-out on susceptibility weighted images in the areas of calcifications. Genetic testing was conducted in 4 patients, revealing the presence of DICER1 pathogenic variant in three cases. Surgery was performed in all cases, with one recurrence in two cases and two recurrences in one case on follow-up. CONCLUSION: NCMHs are predominantly benign tumors of the sinonasal tract, typically associated with DICER1 pathogenic variants and most commonly affecting pediatric population. They may mimic aggressive behavior on imaging; therefore, awareness of this pathology is important. MRI and CT have complementary roles in the diagnosis of this entity.


Assuntos
Hamartoma , Imageamento por Ressonância Magnética , Humanos , Criança , Recém-Nascido , Imagem de Difusão por Ressonância Magnética , Hamartoma/diagnóstico por imagem , Hamartoma/cirurgia , Tomografia Computadorizada por Raios X , Ribonuclease III , RNA Helicases DEAD-box
8.
ArXiv ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-37292481

RESUMO

Pediatric tumors of the central nervous system are the most common cause of cancer-related death in children. The five-year survival rate for high-grade gliomas in children is less than 20%. Due to their rarity, the diagnosis of these entities is often delayed, their treatment is mainly based on historic treatment concepts, and clinical trials require multi-institutional collaborations. The MICCAI Brain Tumor Segmentation (BraTS) Challenge is a landmark community benchmark event with a successful history of 12 years of resource creation for the segmentation and analysis of adult glioma. Here we present the CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs 2023 challenge, which represents the first BraTS challenge focused on pediatric brain tumors with data acquired across multiple international consortia dedicated to pediatric neuro-oncology and clinical trials. The BraTS-PEDs 2023 challenge focuses on benchmarking the development of volumentric segmentation algorithms for pediatric brain glioma through standardized quantitative performance evaluation metrics utilized across the BraTS 2023 cluster of challenges. Models gaining knowledge from the BraTS-PEDs multi-parametric structural MRI (mpMRI) training data will be evaluated on separate validation and unseen test mpMRI dataof high-grade pediatric glioma. The CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs 2023 challenge brings together clinicians and AI/imaging scientists to lead to faster development of automated segmentation techniques that could benefit clinical trials, and ultimately the care of children with brain tumors.

9.
Neurol Genet ; 10(1): e200117, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38149038

RESUMO

Objectives: Brain-limited pathogenic somatic variants are associated with focal pediatric epilepsy, but reliance on resected brain tissue samples has limited our ability to correlate epileptiform activity with abnormal molecular pathology. We aimed to identify the pathogenic variant and map variant allele fractions (VAFs) across an abnormal region of epileptogenic brain in a patient who underwent stereoelectroencephalography (sEEG) and subsequent motor-sparing left frontal disconnection. Methods: We extracted genomic DNA from peripheral blood, brain tissue resected from peri-sEEG electrode regions, and microbulk brain tissue adherent to sEEG electrodes. Samples were mapped based on an anatomic relationship with the presumed seizure onset zone (SOZ). We performed deep panel sequencing of amplified and unamplified DNA to identify pathogenic variants with subsequent orthogonal validation. Results: We detect a pathogenic somatic PIK3CA variant, c.1624G>A (p.E542K), in the brain tissue samples, with VAF inversely correlated with distance from the SOZ. In addition, we identify this variant in amplified electrode-derived samples, albeit with lower VAFs. Discussion: We demonstrate regional mosaicism across epileptogenic tissue, suggesting a correlation between variant burden and SOZ. We also validate a pathogenic variant from individual amplified sEEG electrode-derived brain specimens, although further optimization of techniques is required.

10.
medRxiv ; 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37609311

RESUMO

Purpose: To develop and externally validate a scan-to-prediction deep-learning pipeline for noninvasive, MRI-based BRAF mutational status classification for pLGG. Materials and Methods: We conducted a retrospective study of two pLGG datasets with linked genomic and diagnostic T2-weighted MRI of patients: BCH (development dataset, n=214 [60 (28%) BRAF fusion, 50 (23%) BRAF V600E, 104 (49%) wild-type), and Child Brain Tumor Network (CBTN) (external validation, n=112 [60 (53%) BRAF-Fusion, 17 (15%) BRAF-V600E, 35 (32%) wild-type]). We developed a deep learning pipeline to classify BRAF mutational status (V600E vs. fusion vs. wildtype) via a two-stage process: 1) 3D tumor segmentation and extraction of axial tumor images, and 2) slice-wise, deep learning-based classification of mutational status. We investigated knowledge-transfer and self-supervised approaches to prevent model overfitting with a primary endpoint of the area under the receiver operating characteristic curve (AUC). To enhance model interpretability, we developed a novel metric, COMDist, that quantifies the accuracy of model attention around the tumor. Results: A combination of transfer learning from a pretrained medical imaging-specific network and self-supervised label cross-training (TransferX) coupled with consensus logic yielded the highest macro-average AUC (0.82 [95% CI: 0.70-0.90]) and accuracy (77%) on internal validation, with an AUC improvement of +17.7% and a COMDist improvement of +6.4% versus training from scratch. On external validation, the TransferX model yielded AUC (0.73 [95% CI 0.68-0.88]) and accuracy (75%). Conclusion: Transfer learning and self-supervised cross-training improved classification performance and generalizability for noninvasive pLGG mutational status prediction in a limited data scenario.

11.
medRxiv ; 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37425854

RESUMO

Purpose: Artificial intelligence (AI)-automated tumor delineation for pediatric gliomas would enable real-time volumetric evaluation to support diagnosis, treatment response assessment, and clinical decision-making. Auto-segmentation algorithms for pediatric tumors are rare, due to limited data availability, and algorithms have yet to demonstrate clinical translation. Methods: We leveraged two datasets from a national brain tumor consortium (n=184) and a pediatric cancer center (n=100) to develop, externally validate, and clinically benchmark deep learning neural networks for pediatric low-grade glioma (pLGG) segmentation using a novel in-domain, stepwise transfer learning approach. The best model [via Dice similarity coefficient (DSC)] was externally validated and subject to randomized, blinded evaluation by three expert clinicians wherein clinicians assessed clinical acceptability of expert- and AI-generated segmentations via 10-point Likert scales and Turing tests. Results: The best AI model utilized in-domain, stepwise transfer learning (median DSC: 0.877 [IQR 0.715-0.914]) versus baseline model (median DSC 0.812 [IQR 0.559-0.888]; p<0.05). On external testing (n=60), the AI model yielded accuracy comparable to inter-expert agreement (median DSC: 0.834 [IQR 0.726-0.901] vs. 0.861 [IQR 0.795-0.905], p=0.13). On clinical benchmarking (n=100 scans, 300 segmentations from 3 experts), the experts rated the AI model higher on average compared to other experts (median Likert rating: 9 [IQR 7-9]) vs. 7 [IQR 7-9], p<0.05 for each). Additionally, the AI segmentations had significantly higher (p<0.05) overall acceptability compared to experts on average (80.2% vs. 65.4%). Experts correctly predicted the origins of AI segmentations in an average of 26.0% of cases. Conclusions: Stepwise transfer learning enabled expert-level, automated pediatric brain tumor auto-segmentation and volumetric measurement with a high level of clinical acceptability. This approach may enable development and translation of AI imaging segmentation algorithms in limited data scenarios.

12.
Plast Reconstr Surg Glob Open ; 11(5): e4937, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37180985

RESUMO

Apert syndrome is characterized by eyelid dysmorphology, V-pattern strabismus, extraocular muscle excyclorotation, and elevated intracranial pressure (ICP). We compare eyelid characteristics, severity of V-pattern strabismus, rectus muscle excyclorotation, and ICP control in Apert syndrome patients initially treated by endoscopic strip craniectomy (ESC) at about 4 months of age versus fronto-orbital advancement (FOA) performed about 1 year of age. Methods: Twenty-five patients treated at Boston Children's Hospital met inclusion criteria for this retrospective cohort study. Primary outcomes were magnitude of palpebral fissure downslanting at 1, 3, and 5 years of age, severity of V-pattern strabismus, rectus muscle excyclorotation, and interventions to control ICP. Results: Before craniofacial repair and through 1 year of age, none of the studied parameters differed for FOA versus ESC treated patients. Palpebral fissure downslanting became statistically greater for those treated by FOA by 3 (P < 0.001) and 5 years of age (P = 0.001). Likewise, severity of palpebral fissure downslanting correlated with severity of V-pattern strabismus at 3 (P = 0.004) and 5 (P = 0.002) years of age. Palpebral fissure downslanting and rectus muscle excyclorotation were typically coexistent (P = 0.053). Secondary interventions to control ICP were required in four of 14 patients treated by ESC (primarily FOA) and in two of 11 patients initially treated by FOA (primarily third ventriculostomy) (P = 0.661). Conclusions: Apert patients initially treated by ESC had less severe palpebral fissure downslanting and V-pattern strabismus, normalizing their appearance. Thirty percent initially treated by ESC required secondary FOA to control ICP.

13.
Indian J Community Med ; 48(1): 7-11, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37082403

RESUMO

High burden of acute malnutrition among children less than 5 years is a major public health problem in India. A "Two-days National Consultation on Addressing Acute Malnutrition" was organized to gather experiences and evidence from 13 states of India on prevention and management of acute malnutrition among children and documenting viewpoints from experts and government counterparts on the same. The consultation centered around five key themes of addressing acute malnutrition; 1) capacity building, 2) strengthening screening, 3) nutritional care of wasting, 4) tracking progress, and 5) scale-up. The paper highlights the experiences and key recommendations around the above key themes. It emerged that there is a need to further accelerate the efforts toward strengthening existing platforms and services to address acute malnutrition among children. Regular trainings of the frontline workers, increased convergence, regular monitoring, and continued service delivery during the pandemic should be undertaken for better outcomes.

14.
J Neurosurg Pediatr ; 31(3): 206-211, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36681974

RESUMO

OBJECTIVE: Stereoelectroencephalography (SEEG) and MRI-guided laser interstitial thermal therapy (MRgLITT) have emerged as safe, effective, and less invasive alternatives to subdural grid placement and open resection, respectively, for the localization and treatment of medically refractory epilepsy (MRE) in children. Reported pediatric experience combining these complementary techniques is limited, with traditional workflows separating electrode removal and ablation/resection. The authors describe the largest reported series of pediatric epilepsy patients who underwent MRgLITT following SEEG contrasted with a cohort that underwent craniotomy following SEEG, combining ablation/resection with electrode explantation as standard practice. METHODS: The medical records of all patients with MRE who had undergone SEEG followed by MRgLITT or open resection/disconnection at Boston Children's Hospital between November 2015 and December 2020 were retrospectively reviewed. Primary outcome variables included surgical complication rates, length of hospital stay following treatment, and Engel classification at the last follow-up. RESULTS: Of 74 SEEG patients, 27 (median age 12.1 years, 63% female) underwent MRgLITT and 47 (median age 12.1 years, 49% female) underwent craniotomy. Seventy patients (95%) underwent SEEG followed by combined electrode removal and treatment. Eight MRgLITT cases (30%) and no open cases targeted the insula (p < 0.001). Complication rates did not differ, although trends toward more subdural/epidural hematomas, infarcts, and permanent unanticipated neurological deficits were evident following craniotomy, whereas a trend toward more temporary unanticipated neurological deficits was seen following MRgLITT. The median duration of hospitalization after treatment was 3 and 5 days for MRgLITT and open cases, respectively (p = 0.078). Seizure outcomes were similar between the cohorts, with 74% of MRgLITT and craniotomy patients attaining Engel class I or II outcomes (p = 0.386) at the last follow-up (median 1.1 and 1.9 years, respectively). CONCLUSIONS: MRgLITT and open resection following SEEG can both effectively treat MRE in pediatric patients and generally can be performed in a two-surgery workflow during a single hospitalization. In appropriately selected patients, MRgLITT tended to be associated with shorter hospitalizations and fewer complications following treatment and may be best suited for focal deep-seated targets associated with relatively challenging open surgical approaches.


Assuntos
Epilepsia Resistente a Medicamentos , Terapia a Laser , Humanos , Criança , Feminino , Masculino , Epilepsia Resistente a Medicamentos/cirurgia , Estudos Retrospectivos , Terapia a Laser/métodos , Eletroencefalografia/métodos , Técnicas Estereotáxicas/efeitos adversos , Imageamento por Ressonância Magnética/métodos , Eletrodos , Lasers , Resultado do Tratamento
15.
Ann Neurol ; 93(1): 109-119, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36254350

RESUMO

OBJECTIVE: Small vessel primary angiitis of the central nervous system is a rare and often severe disease characterized by central nervous system-restricted inflammatory vasculitis on histopathology. Diagnosis requires brain biopsy for confirmation and is suggested prior to starting immunotherapy when feasible. However, emerging evidence suggests that other neuroinflammatory conditions may have a clinical and radiographic phenotype that mimics small vessel primary angiitis, at times with overlapping pathologic features as well. Such diagnoses, including myelin oligodendrocyte glycoprotein antibody-associated disease and central nervous system-restricted hemophagocytic lymphohistiocytosis, can be non-invasively diagnosed with serum antibody or genetic testing that would prompt different monitoring and treatment paradigms. To determine the ultimate diagnosis of patients who were suspected prior to biopsy to have small vessel primary angiitis, we reviewed the clinical, radiographic, and pathological features of a cohort of patients at a single center undergoing brain biopsy for non-oncologic indications. METHODS: Clinical data were retrospectively extracted from the medical record. Pathology and neuroimaging review was conducted. RESULTS: We identified 21 patients over a 19-year time-period, of whom 14 (66.7%) were ultimately diagnosed with entities other than small vessel primary angiitis that would have obviated the need for brain biopsy. Diagnoses included anti-myelin oligodendrocyte glycoprotein antibody associated disease (n = 9), central nervous system-restricted hemophagocytic lymphohistiocytosis (n = 3), anti-GABAA receptor encephalitis (n = 1), and Aicardi-Goutières syndrome (n = 1). INTERPRETATION: This study highlights the importance of pursuing now readily available non-invasive testing for mimicking diagnoses before performing a brain biopsy for suspected small vessel primary angiitis of the central nervous system. ANN NEUROL 2023;93:109-119.


Assuntos
Linfo-Histiocitose Hemofagocítica , Vasculite do Sistema Nervoso Central , Humanos , Estudos Retrospectivos , Linfo-Histiocitose Hemofagocítica/complicações , Sistema Nervoso Central/patologia , Vasculite do Sistema Nervoso Central/diagnóstico por imagem , Glicoproteínas
17.
J Neuroimaging ; 32(5): 991-1000, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35729081

RESUMO

BACKGROUND AND PURPOSE: The success of epilepsy surgery in children with tuberous sclerosis complex (TSC) hinges on identification of the epileptogenic zone (EZ). We studied structural MRI markers of epileptogenic lesions in young children with TSC. METHODS: We included 26 children with TSC who underwent epilepsy surgery before the age of 3 years at five sites, with 12 months or more follow-up. Two neuroradiologists, blinded to surgical outcome data, reviewed 10 candidate lesions on preoperative MRI for characteristics of the tuber (large affected area, calcification, cyst-like properties) and of focal cortical dysplasia (FCD) features (cortical malformation, gray-white matter junction blurring, transmantle sign). They selected lesions suspect for the EZ based on structural MRI, and reselected after unblinding to seizure onset location on electroencephalography (EEG). RESULTS: None of the tuber characteristics and FCD features were distinctive for the EZ, indicated by resected lesions in seizure-free children. With structural MRI alone, the EZ was identified out of 10 lesions in 31%, and with addition of EEG data, this increased to 48%. However, rates of identification of resected lesions in non-seizure-free children were similar. Across 251 lesions, interrater agreement was moderate for large size (κ = .60), and fair (κ = .24) for all other features. CONCLUSIONS: In young children with TSC, the utility of structural MRI features is limited in the identification of the epileptogenic tuber, but improves when combined with EEG data.


Assuntos
Epilepsia , Malformações do Desenvolvimento Cortical , Esclerose Tuberosa , Criança , Pré-Escolar , Eletroencefalografia/métodos , Epilepsia/diagnóstico por imagem , Epilepsia/cirurgia , Humanos , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos , Resultado do Tratamento , Esclerose Tuberosa/complicações , Esclerose Tuberosa/diagnóstico por imagem , Esclerose Tuberosa/cirurgia
18.
Neuro Oncol ; 24(11): 1964-1975, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35397478

RESUMO

BACKGROUND: The prognosis for patients with pediatric high-grade glioma (pHGG) is poor despite aggressive multimodal therapy. Objective responses to targeted therapy with BRAF inhibitors have been reported in some patients with recurrent BRAF-mutant pHGG but are rarely sustained. METHODS: We performed a retrospective, multi-institutional review of patients with BRAF-mutant pHGG treated with off-label BRAF +/- MEK inhibitors as part of their initial therapy. RESULTS: Nineteen patients were identified, with a median age of 11.7 years (range, 2.3-21.4). Histologic diagnoses included HGG (n = 6), glioblastoma (n = 3), anaplastic ganglioglioma (n = 4), diffuse midline glioma (n = 3), high-grade neuroepithelial tumor (n = 1), anaplastic astrocytoma (n = 1), and anaplastic astroblastoma (n = 1). Recurrent concomitant oncogenic alterations included CDKN2A/B loss, H3 K27M, as well as mutations in ATRX, EGFR, and TERT. Eight patients received BRAF inhibitor monotherapy. Eleven patients received combination therapy with BRAF and MEK inhibitors. Most patients tolerated long-term treatment well with no grade 4-5 toxicities. Objective and durable imaging responses were seen in the majority of patients with measurable disease. At a median follow-up of 2.3 years (range, 0.3-6.5), three-year progression-free and overall survival for the cohort were 65% and 82%, respectively, and superior to a historical control cohort of BRAF-mutant pHGG patients treated with conventional therapies. CONCLUSIONS: Upfront targeted therapy for patients with BRAF-mutant pHGG is feasible and effective, with superior clinical outcomes compared to historical data. This promising treatment paradigm is currently being evaluated prospectively in the Children's Oncology Group ACNS1723 clinical trial.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Criança , Humanos , Pré-Escolar , Adolescente , Adulto Jovem , Adulto , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Encefálicas/patologia , Terapia de Alvo Molecular , Estudos Retrospectivos , Glioma/patologia , Mutação , Inibidores de Proteínas Quinases/uso terapêutico , Glioblastoma/tratamento farmacológico , Quinases de Proteína Quinase Ativadas por Mitógeno
19.
Clin Neurophysiol ; 141: 126-138, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-33875376

RESUMO

OBJECTIVE: To assess the utility of interictal magnetic and electric source imaging (MSI and ESI) using dipole clustering in magnetic resonance imaging (MRI)-negative patients with drug resistant epilepsy (DRE). METHODS: We localized spikes in low-density (LD-EEG) and high-density (HD-EEG) electroencephalography as well as magnetoencephalography (MEG) recordings using dipoles from 11 pediatric patients. We computed each dipole's level of clustering and used it to discriminate between clustered and scattered dipoles. For each dipole, we computed the distance from seizure onset zone (SOZ) and irritative zone (IZ) defined by intracranial EEG. Finally, we assessed whether dipoles proximity to resection was predictive of outcome. RESULTS: LD-EEG had lower clusterness compared to HD-EEG and MEG (p < 0.05). For all modalities, clustered dipoles showed higher proximity to SOZ and IZ than scattered (p < 0.001). Resection percentage was higher in optimal vs. suboptimal outcome patients (p < 0.001); their proximity to resection was correlated to outcome (p < 0.001). No difference in resection percentage was seen for scattered dipoles between groups. CONCLUSION: MSI and ESI dipole clustering helps to localize the SOZ and IZ and facilitate the prognostic assessment of MRI-negative patients with DRE. SIGNIFICANCE: Assessing the MSI and ESI clustering allows recognizing epileptogenic areas whose removal is associated with optimal outcome.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Criança , Análise por Conglomerados , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia , Eletrocorticografia/métodos , Eletroencefalografia/métodos , Epilepsia/diagnóstico por imagem , Epilepsia/patologia , Epilepsia/cirurgia , Humanos , Imageamento por Ressonância Magnética , Magnetoencefalografia/métodos , Convulsões/cirurgia
20.
Magn Reson Imaging Clin N Am ; 29(4): 655-666, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34717852

RESUMO

The ready availability of advanced visualization tools on picture archiving and communication systems workstations or even standard laptops through server-based or cloud-based solutions has enabled greater adoption of these techniques. We describe how radiologists can tailor imaging techniques for optimal 3D reconstructions provide a brief overview of the standard and newer "on-screen" techniques. We describe the process of creating 3D printed models for surgical simulation and education, with examples from the authors' institution and the existing literature. Finally, the review highlights current uses and potential future use cases for virtual reality and augmented reality applications in a pediatric neuroimaging setting.


Assuntos
Realidade Aumentada , Imageamento Tridimensional , Encéfalo/diagnóstico por imagem , Criança , Humanos , Imageamento por Ressonância Magnética , Coluna Vertebral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...