Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Malar J ; 21(1): 130, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459163

RESUMO

BACKGROUND: The rise in Plasmodium falciparum resistance to dihydroartemisinin-piperaquine (DHA-PPQ) treatment has been documented in the Greater Mekong Subregion with associations with mutations in the P. falciparum chloroquine resistance transporter (pfcrt) and plasmepsin 2 (pfpm2) genes. However, it is unclear whether other genes also play a role with PPQ resistance, such as the E415G mutation in the exonuclease (pfexo) gene. The aim of this study was to investigate the role of this mutation in PPQ resistance by generating transgenic parasites expressing the pfexo-E415G mutant allele. METHODS: Transgenic parasite clones carrying the E415G mutation in PfEXO of the B5 isolate were derived by CRISPR-Cas9 gene editing and verified using PCR and gene sequencing. Polymorphisms of pfkelch-13, pfcrt, and pfexo were examined by PCR while the copy number variations of pfpm2 were examined by both relative quantitative real-time PCR and the duplication breakpoint assay. Drug sensitivity against a panel of antimalarials, the ring-stage survival assay (RSA), the PPQ survival assay (PSA), and bimodal dose-response curves were used to evaluate antimalarial susceptibility. RESULTS: The transgenic line, B5-rexo-E415G-B8, was successfully generated. The PPQ-IC90, %PPQ survival, and the bimodal dose-response clearly showed that E415G mutation in PfEXO of B5 isolate remained fully susceptible to PPQ. Furthermore, growth assays demonstrated that the engineered parasites grew slightly faster than the unmodified parental isolates whereas P. falciparum isolates harbouring pfkelch-13, pfcrt, and pfexo mutations with multiple copies of pfpm2 grew much more slowly. CONCLUSIONS: Insertion of the E415G mutation in PfEXO did not lead to increased PPQ-IC90 and %PPQ survival, suggesting that this mutation alone may not be associated with PPQ resistance, but could still be an important marker if used in conjunction with other markers for monitoring PPQ-resistant parasites. The results also highlight the importance of monitoring and evaluating suspected genetic mutations with regard to parasite fitness and resistance.


Assuntos
Antimaláricos , Malária Falciparum , Parasitos , Quinolinas , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Variações do Número de Cópias de DNA , Resistência a Medicamentos/genética , Exonucleases/genética , Exonucleases/farmacologia , Exonucleases/uso terapêutico , Malária Falciparum/parasitologia , Proteínas de Membrana Transportadoras/genética , Mutação , Fosfodiesterase I/genética , Fosfodiesterase I/farmacologia , Piperazinas , Plasmodium falciparum , Mutação Puntual , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Quinolinas/farmacologia , Quinolinas/uso terapêutico
2.
Sci Rep ; 11(1): 13419, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34183715

RESUMO

Malaria remains a public health problem in Thailand, especially along its borders where highly mobile populations can contribute to persistent transmission. This study aimed to determine resistant genotypes and phenotypes of 112 Plasmodium falciparum isolates from patients along the Thai-Cambodia border during 2013-2015. The majority of parasites harbored a pfmdr1-Y184F mutation. A single pfmdr1 copy number had CVIET haplotype of amino acids 72-76 of pfcrt and no pfcytb mutations. All isolates had a single pfk13 point mutation (R539T, R539I, or C580Y), and increased % survival in the ring-stage survival assay (except for R539I). Multiple copies of pfpm2 and pfcrt-F145I were detected in 2014 (12.8%) and increased to 30.4% in 2015. Parasites containing either multiple pfpm2 copies with and without pfcrt-F145I or a single pfpm2 copy with pfcrt-F145I exhibited elevated IC90 values of piperaquine. Collectively, the emergence of these resistance patterns in Thailand near Cambodia border mirrored the reports of dihydroartemisinin-piperaquine treatment failures in the adjacent province of Cambodia, Oddar Meanchey, suggesting a migration of parasites across the border. As malaria elimination efforts ramp up in Southeast Asia, host nations militaries and other groups in border regions need to coordinate the proposed interventions.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos/genética , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Quinolinas/farmacologia , Adolescente , Adulto , Idoso , Antimaláricos/administração & dosagem , Antimaláricos/uso terapêutico , Artemisininas/administração & dosagem , Artemisininas/uso terapêutico , Variações do Número de Cópias de DNA , DNA de Protozoário/genética , Quimioterapia Combinada , Doenças Endêmicas , Feminino , Estudos de Associação Genética , Genótipo , Haplótipos/genética , Humanos , Malária Falciparum/epidemiologia , Masculino , Pessoa de Meia-Idade , Parasitemia/tratamento farmacológico , Parasitemia/epidemiologia , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/isolamento & purificação , Proteínas de Protozoários/genética , Proteínas de Protozoários/fisiologia , Quinolinas/administração & dosagem , Quinolinas/uso terapêutico , Tailândia/epidemiologia , Adulto Jovem
3.
J Infect Dis ; 224(6): 1077-1085, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-33528566

RESUMO

BACKGROUND: Newly emerged mutations within the Plasmodium falciparum chloroquine resistance transporter (PfCRT) can confer piperaquine resistance in the absence of amplified plasmepsin II (pfpm2). In this study, we estimated the prevalence of co-circulating piperaquine resistance mutations in P. falciparum isolates collected in northern Cambodia from 2009 to 2017. METHODS: The sequence of pfcrt was determined for 410 P. falciparum isolates using PacBio amplicon sequencing or whole genome sequencing. Quantitative polymerase chain reaction was used to estimate pfpm2 and pfmdr1 copy number. RESULTS: Newly emerged PfCRT mutations increased in prevalence after the change to dihydroartemisinin-piperaquine in 2010, with >98% of parasites harboring these mutations by 2017. After 2014, the prevalence of PfCRT F145I declined, being outcompeted by parasites with less resistant, but more fit PfCRT alleles. After the change to artesunate-mefloquine, the prevalence of parasites with amplified pfpm2 decreased, with nearly half of piperaquine-resistant PfCRT mutants having single-copy pfpm2. CONCLUSIONS: The large proportion of PfCRT mutants that lack pfpm2 amplification emphasizes the importance of including PfCRT mutations as part of molecular surveillance for piperaquine resistance in this region. Likewise, it is critical to monitor for amplified pfmdr1 in these PfCRT mutants, as increased mefloquine pressure could lead to mutants resistant to both drugs.


Assuntos
Antimaláricos/farmacologia , Biomarcadores/metabolismo , Resistência a Medicamentos/genética , Malária Falciparum/tratamento farmacológico , Proteínas de Membrana Transportadoras/genética , Piperazinas/uso terapêutico , Proteínas de Protozoários/genética , Quinolinas/uso terapêutico , Animais , Antimaláricos/uso terapêutico , Camboja/epidemiologia , Resistência a Medicamentos/efeitos dos fármacos , Malária Falciparum/epidemiologia , Mefloquina/uso terapêutico , Mutação/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Plasmodium falciparum/isolamento & purificação , Prevalência , Reação em Cadeia da Polimerase em Tempo Real
4.
Malar J ; 19(1): 269, 2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32711538

RESUMO

BACKGROUND: High rates of dihydroartemisinin-piperaquine (DHA-PPQ) treatment failures have been documented for uncomplicated Plasmodium falciparum in Cambodia. The genetic markers plasmepsin 2 (pfpm2), exonuclease (pfexo) and chloroquine resistance transporter (pfcrt) genes are associated with PPQ resistance and are used for monitoring the prevalence of drug resistance and guiding malaria drug treatment policy. METHODS: To examine the relative contribution of each marker to PPQ resistance, in vitro culture and the PPQ survival assay were performed on seventeen P. falciparum isolates from northern Cambodia, and the presence of E415G-Exo and pfcrt mutations (T93S, H97Y, F145I, I218F, M343L, C350R, and G353V) as well as pfpm2 copy number polymorphisms were determined. Parasites were then cloned by limiting dilution and the cloned parasites were tested for drug susceptibility. Isobolographic analysis of several drug combinations for standard clones and newly cloned P. falciparum Cambodian isolates was also determined. RESULTS: The characterization of culture-adapted isolates revealed that the presence of novel pfcrt mutations (T93S, H97Y, F145I, and I218F) with E415G-Exo mutation can confer PPQ-resistance, in the absence of pfpm2 amplification. In vitro testing of PPQ resistant parasites demonstrated a bimodal dose-response, the existence of a swollen digestive vacuole phenotype, and an increased susceptibility to quinine, chloroquine, mefloquine and lumefantrine. To further characterize drug sensitivity, parental parasites were cloned in which a clonal line, 14-B5, was identified as sensitive to artemisinin and piperaquine, but resistant to chloroquine. Assessment of the clone against a panel of drug combinations revealed antagonistic activity for six different drug combinations. However, mefloquine-proguanil and atovaquone-proguanil combinations revealed synergistic antimalarial activity. CONCLUSIONS: Surveillance for PPQ resistance in regions relying on DHA-PPQ as the first-line treatment is dependent on the monitoring of molecular markers of drug resistance. P. falciparum harbouring novel pfcrt mutations with E415G-exo mutations displayed PPQ resistant phenotype. The presence of pfpm2 amplification was not required to render parasites PPQ resistant suggesting that the increase in pfpm2 copy number alone is not the sole modulator of PPQ resistance. Genetic background of circulating field isolates appear to play a role in drug susceptibility and biological responses induced by drug combinations. The use of latest field isolates may be necessary for assessment of relevant drug combinations against P. falciparum strains and when down-selecting novel drug candidates.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos , Genótipo , Fenótipo , Plasmodium falciparum/genética , Quinolinas/farmacologia , Camboja , Marcadores Genéticos , Plasmodium falciparum/efeitos dos fármacos
5.
Malar J ; 16(1): 392, 2017 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-28964258

RESUMO

BACKGROUND: While intensive Plasmodium falciparum multidrug resistance surveillance continues in Cambodia, relatively little is known about Plasmodium vivax drug resistance in Cambodia or elsewhere. To investigate P. vivax anti-malarial susceptibility in Cambodia, 76 fresh P. vivax isolates collected from Oddar Meanchey (northern Cambodia) in 2013-2015 were assessed for ex vivo drug susceptibility using the microscopy-based schizont maturation test (SMT) and a Plasmodium pan-species lactate dehydrogenase (pLDH) ELISA. P. vivax multidrug resistance gene 1 (pvmdr1) mutations, and copy number were analysed in a subset of isolates. RESULTS: Ex vivo testing was interpretable in 80% of isolates using the pLDH-ELISA, but only 25% with the SMT. Plasmodium vivax drug susceptibility by pLDH-ELISA was directly compared with 58 P. falciparum isolates collected from the same locations in 2013-4, tested by histidine-rich protein-2 ELISA. Median pLDH-ELISA IC50 of P. vivax isolates was significantly lower for dihydroartemisinin (3.4 vs 6.3 nM), artesunate (3.2 vs 5.7 nM), and chloroquine (22.1 vs 103.8 nM) than P. falciparum but higher for mefloquine (92 vs 66 nM). There were not significant differences for lumefantrine or doxycycline. Both P. vivax and P. falciparum had comparable median piperaquine IC50 (106.5 vs 123.8 nM), but some P. falciparum isolates were able to grow in much higher concentrations above the normal standard range used, attaining up to 100-fold greater IC50s than P. vivax. A high percentage of P. vivax isolates had pvmdr1 Y976F (78%) and F1076L (83%) mutations but none had pvmdr1 amplification. CONCLUSION: The findings of high P. vivax IC50 to mefloquine and piperaquine, but not chloroquine, suggest significant drug pressure from drugs used to treat multidrug resistant P. falciparum in Cambodia. Plasmodium vivax isolates are frequently exposed to mefloquine and piperaquine due to mixed infections and the long elimination half-life of these drugs. Difficulty distinguishing infection due to relapsing hypnozoites versus blood-stage recrudescence complicates clinical detection of P. vivax resistance, while well-validated molecular markers of chloroquine resistance remain elusive. The pLDH assay may be a useful adjunctive tool for monitoring for emerging drug resistance, though more thorough validation is needed. Given high grade clinical chloroquine resistance observed recently in neighbouring countries, low chloroquine IC50 values seen here should not be interpreted as susceptibility in the absence of clinical data. Incorporating pLDH monitoring with therapeutic efficacy studies for individuals with P. vivax will help to further validate this field-expedient method.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos , Ensaio de Imunoadsorção Enzimática/métodos , Microscopia/métodos , Plasmodium vivax/efeitos dos fármacos , Camboja , Variações do Número de Cópias de DNA , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Mutação , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Esquizontes/crescimento & desenvolvimento
6.
Malar J ; 15(1): 519, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27769299

RESUMO

BACKGROUND: The recent dramatic decline in dihydroartemisinin-piperaquine (DHA-PPQ) efficacy in northwestern Cambodia has raised concerns about the rapid spread of piperaquine resistance just as DHA-PPQ is being introduced as first-line therapy in neighbouring countries. METHODS: Ex vivo parasite susceptibilities were tracked to determine the rate of progression of DHA, PPQ and mefloquine (MQ) resistance from sentinel sites on the Thai-Cambodian and Thai-Myanmar borders from 2010 to 2015. Immediate ex vivo (IEV) histidine-rich protein 2 (HRP-2) assays were used on fresh patient Plasmodium falciparum isolates to determine drug susceptibility profiles. RESULTS: IEV HRP-2 assays detected the precipitous emergence of PPQ resistance in Cambodia beginning in 2013 when 40 % of isolates had an IC90 greater than the upper limit of prior years, and this rate doubled to 80 % by 2015. In contrast, Thai-Myanmar isolates from 2013 to 14 remained PPQ-sensitive, while northeastern Thai isolates appeared to have an intermediate resistance profile. The opposite trend was observed for MQ where Cambodian isolates appeared to have a modest increase in overall sensitivity during the same period, with IC50 declining to median levels comparable to those found in Thailand. A significant association between increased PPQ IC50 and IC90 among Cambodian isolates with DHA-PPQ treatment failure was observed. Nearly all Cambodian and Thai isolates were deemed artemisinin resistant with a >1 % survival rate for DHA in the ring-stage assay (RSA), though there was no correlation among isolates to indicate cross-resistance between PPQ and artemisinins. CONCLUSIONS: Clinical DHA-PPQ failures appear to be associated with declines in the long-acting partner drug PPQ, though sensitivity appears to remain largely intact for now in western Thailand. Rapid progression of PPQ resistance associated with DHA-PPQ treatment failures in northern Cambodia limits drugs of choice in this region, and urgently requires alternative therapy. The temporary re-introduction of artesunate AS-MQ is the current response to PPQ resistance in this area, due to inverse MQ and PPQ resistance patterns. This will require careful monitoring for re-emergence of MQ resistance, and possible simultaneous resistance to all three drugs (AS, MQ and PPQ).


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos , Plasmodium falciparum/efeitos dos fármacos , Quinolinas/farmacologia , Antígenos de Protozoários/análise , Artemisininas/farmacologia , Camboja , Humanos , Concentração Inibidora 50 , Mefloquina/farmacologia , Testes de Sensibilidade Parasitária , Plasmodium falciparum/isolamento & purificação , Proteínas de Protozoários/análise , Tailândia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...