Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
ACS Chem Biol ; 18(3): 484-493, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36775999

RESUMO

In DNA, electron excitation allows adjacent pyrimidine bases to dimerize by [2 + 2] cycloaddition, creating chemically stable but lethal and mutagenic cyclobutane pyrimidine dimers (CPDs). The usual cause is ultraviolet radiation. Alternatively, CPDs can be made in the dark (dCPDs) via chemically mediated electron excitation of the skin pigment melanin, after it is oxidized by peroxynitrite formed from the stress-induced radicals superoxide and nitric oxide. We now show that the dark process is not limited to the unusual structural molecule melanin: signaling biomolecules such as indolamine and catecholamine neurotransmitters and hormones can also be chemiexcited to energy levels high enough to form dCPDs. Oxidation of serotonin, dopamine, melatonin, and related biogenic amines by peroxynitrite created triplet-excited species, evidenced by chemiluminescence, energy transfer to a triplet-state reporter, or transfer to O2 resulting in singlet molecular oxygen. For a subset of these signaling molecules, triplet states created by peroxynitrite or peroxidase generated dCPDs at levels comparable to ultraviolet (UV). Neurotransmitter catabolism by monoamine oxidase also generated dCPDs. These results reveal a large class of signaling molecules as electronically excitable by biochemical reactions and thus potential players in deviant mammalian metabolism in the absence of light.


Assuntos
Dano ao DNA , Raios Ultravioleta , Animais , Melaninas/genética , Ácido Peroxinitroso , Dímeros de Pirimidina/química , Neurotransmissores , Hormônios , DNA/química , Mamíferos/genética , Mamíferos/metabolismo
2.
Photochem Photobiol ; 99(2): 661-671, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36047912

RESUMO

Leucocytes generate hypohalous acids (HOCl and HOBr) to defend the host against pathogens. In cells, hypohalous acids react with amine-containing molecules, such as amino acids and polyamines, producing chloramines and bromamines, reservoirs of oxidizing power that can potentially damage host tissues at sites of inflammation. Hypohalous acids also react with H2 O2 to produce stoichiometric amounts of singlet molecular oxygen ( 1 O 2 ), but its generation in leucocytes is still under debate. Additionally, it is unclear whether haloamines generate 1 O 2 following a reaction with H2 O2 . Herein, we provide evidence of the generation of 1 O 2 in the reactions between amino acid-derived (taurine, N-α-acetyl-Lysine and glycine) and polyamine-derived (spermine and spermidine) haloamines and H2 O2 in an aqueous solution. The unequivocal formation of 1 O 2 was detected by monitoring its characteristic monomol light emission at 1270 nm in the near-infrared region. For amino acid-derived haloamines, the presence of 1 O 2 was further confirmed by chemical trapping with anthracene-9,10-divinylsulfonate and HPLC-MS/MS detection. Altogether, photoemission and chemical trapping studies demonstrated that chloramines were less effective at producing 1 O 2 than bromamines of amino acids and polyamines. Thus, 1 O 2 formation via bromamines and H2 O2 may be a potential source of 1 O 2 in nonilluminated biological systems.


Assuntos
Peróxido de Hidrogênio , Oxigênio Singlete , Peróxido de Hidrogênio/química , Oxigênio Singlete/química , Aminoácidos , Poliaminas , Cloraminas , Espectrometria de Massas em Tandem , Oxigênio , Ácidos
3.
Free Radic Biol Med ; 187: 17-28, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35580773

RESUMO

Methionine is one of the main targets for biological oxidants. Its reaction with the majority of oxidants generates only methionine sulfoxide. However, when N-terminal methionine reacts with hypohalous acids (HOCl and HOBr) or singlet molecular oxygen (1O2), it can also generate a cyclic product called dehydromethionine (DHM). Previously, DHM was suggested as a biomarker of oxidative stress induced by hypohalous acids. However, DHM can also be generated by 1O2 -oxidation of methionine, and the contribution of this pathway of DHM formation in a context of a site-specific redox imbalance in an organism is unknown. In this work, a through comparison of the reactions of hypohalous acids and 1O2 with methionine, either free or inserted in peptides and proteins was undertaken. In addition, we performed methionine photooxidation in heavy water (H218O) to determine the influence of the pH in the mechanism of DHM formation. We showed that for free methionine, or methionine-containing peptides, the yields of DHM formation in the reactions with 1O2 were close to those achieved by HOBr oxidation, but much higher than the yields obtained with HOCl as the oxidant. This was true for all pH tested (5, 7.4, and 9). Interestingly, for the protein ubiquitin, DHM yields after reaction with 1O2 were higher than those obtained with both hypohalous acids. Our results indicate that 1O2 may also be an important source of DHM in biological systems.


Assuntos
Metionina , Oxigênio Singlete , Metionina/química , Oxidantes/química , Oxirredução , Oxigênio , Peptídeos/química , Proteínas , Oxigênio Singlete/química , Tiazóis
4.
Photochem Photobiol ; 98(3): 678-686, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35363890

RESUMO

The reaction of singlet oxygen (1 O2 ) with the amino acids tryptophan and tyrosine, either free or inserted in peptides or proteins, gives rise to hydroperoxides. To understand the impact of these hydroperoxides in complex biological systems, methods allowing their characterization and accurate quantification must be available. In this work, hydroperoxides derived from tryptophan and tyrosine and from peptides containing these amino acids were synthesized by photooxidation, and characterized by high-resolution mass spectrometry. In addition, experiments were carried out to compare two colorimetric methods commonly used for quantification of peroxides, namely the iodometric and the ferric-xylenol orange assays. For the tryptophan hydroperoxide, the quantifications obtained by colorimetric methods were then compared to that obtained by NMR. The results showed that for the ferric-xylenol orange method, the stoichiometry between peroxide and Fe3+ ions varies considerably. On the other hand, for the iodometric assay, the stoichiometry peroxide:I3 - ions is always 1:1. However, the kinetics of the reactions of peroxides with I- vary, and the assay must be performed in anaerobic conditions. Thus, the iodometric method is more appropriate for precise quantification of a given peroxide. The characterization and accurate quantification of biological peroxides is key to understand the mechanisms involved in redox processes.


Assuntos
Peróxido de Hidrogênio , Triptofano , Aminas/química , Aminoácidos/química , Peróxido de Hidrogênio/química , Oxirredução , Peptídeos/química , Peróxidos , Tirosina
5.
J Phys Chem A ; 121(32): 5954-5966, 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28707899

RESUMO

A nitrosamine photooxidation reaction is shown to generate a peroxy intermediate by experimental physical-organic methods. The irradiation of phenyl and methyl-substituted nitrosamines in the presence of isotopically labeled 18-oxygen revealed that an O atom was trapped from a peroxy intermediate to trimethylphosphite or triphenylphosphine, or by nitrosamine itself, forming two moles of nitramine. The unstable peroxy intermediate can be trapped at low temperature in postphotolyzed solution in the dark. Chemiluminescence was also observed upon thermal decomposition of the peroxy intermediate, that is, when a postphotolysis low-temperature solution is brought up to room temperature. A DFT study provides tentative information for cyclic nitrogen peroxide species on the reaction surface.

6.
J Org Chem ; 80(12): 6119-27, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-26000876

RESUMO

The detection of an oxygen-atom photoexchange process of N-nitrosamines is reported. The photolysis of four nitrosamines (N-nitrosodiphenylamine 1, N-nitroso-N-methylaniline 2, N-butyl-N-(4-hydroxybutyl)nitrosamine 3, and N-nitrosodiethylamine 4) with ultraviolet light was examined in an (18)O2-enriched atmosphere in solution. HPLC/MS and HPLC-MS/MS data show that (18)O-labeled nitrosamines were generated for 1 and 2. In contrast, nitrosamines 3 and 4 do not exchange the (18)O label and instead decomposed to amines and/or imines under the conditions. For 1 and 2, the (18)O atom was found not to be introduced by moisture or by singlet oxygen [(18)((1)O2 (1)Δg)] produced thermally by (18)O-(18)O labeled endoperoxide of N,N'-di(2,3-hydroxypropyl)-1,4-naphthalene dipropanamide (DHPN(18)O2) or by visible-light sensitization. A density functional theory study of the structures and energetics of peroxy intermediates arising from reaction of nitrosamines with O2 is also presented. A reversible head-to-tail dimerization of the O-nitrooxide to the 1,2,3,5,6,7-hexaoxadiazocane (30 kcal/mol barrier) with extrusion of O═(18)O accounts for exchange of the oxygen atom label. The unimolecular cyclization of O-nitrooxide to 1,2,3,4-trioxazetidine (46 kcal/mol barrier) followed by a retro [2 + 2] reaction is an alternative, but higher energy process. Both pathways would require the photoexcitation of the nitrooxide.


Assuntos
Aminas/química , Nitrosaminas/química , Oxigênio Singlete/química , Estrutura Molecular , Processos Fotoquímicos , Espectrometria de Massas em Tandem , Raios Ultravioleta
7.
Plant Physiol ; 157(2): 692-705, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21844310

RESUMO

Glucose modulates plant metabolism, growth, and development. In Arabidopsis (Arabidopsis thaliana), Hexokinase1 (HXK1) is a glucose sensor that may trigger abscisic acid (ABA) synthesis and sensitivity to mediate glucose-induced inhibition of seedling development. Here, we show that the intensity of short-term responses to glucose can vary with ABA activity. We report that the transient (2 h/4 h) repression by 2% glucose of AtbZIP63, a gene encoding a basic-leucine zipper (bZIP) transcription factor partially involved in the Snf1-related kinase KIN10-induced responses to energy limitation, is independent of HXK1 and is not mediated by changes in ABA levels. However, high-concentration (6%) glucose-mediated repression appears to be modulated by ABA, since full repression of AtbZIP63 requires a functional ABA biosynthetic pathway. Furthermore, the combination of glucose and ABA was able to trigger a synergistic repression of AtbZIP63 and its homologue AtbZIP3, revealing a shared regulatory feature consisting of the modulation of glucose sensitivity by ABA. The synergistic regulation of AtbZIP63 was not reproduced by an AtbZIP63 promoter-5'-untranslated region::ß-glucuronidase fusion, thus suggesting possible posttranscriptional control. A transcriptional inhibition assay with cordycepin provided further evidence for the regulation of mRNA decay in response to glucose plus ABA. Overall, these results indicate that AtbZIP63 is an important node of the glucose-ABA interaction network. The mechanisms by which AtbZIP63 may participate in the fine-tuning of ABA-mediated abiotic stress responses according to sugar availability (i.e., energy status) are discussed.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Glucose/metabolismo , Regiões 5' não Traduzidas , Ácido Abscísico/biossíntese , Vias Biossintéticas , Regulação da Expressão Gênica de Plantas , Glucuronidase/genética , Glucuronidase/metabolismo , Hexoquinase/metabolismo , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade de RNA , Transdução de Sinais , Transativadores/metabolismo
8.
São Paulo; s.n; 2009. 207 p. ilus, tab.
Tese em Português | LILACS | ID: lil-594175

RESUMO

A oxidação do DNA por espécies reativas de oxigênio, como o oxigênio molecular singlete [O2 (1Δg)] , pode estar relacionada ao aparecimento de mutações e ao desenvolvimento de doenças. O O2 (1Δg) pode ser gerado biologicamente por reação de fotossensibilização, pela reação de H2O2 e HOCl e pela decomposição de peróxidos orgânicos contendo hidrogênio alfa (α-ROOH), na presença de metais de transição (Fe2+, Cu2+) ou HOCl. A decomposição de α-ROOH, como hidroperóxidos de lipídeos ou proteínas na presença de metais de transição, pode gerar O2 (1Δg) via mecanismo de Russell. Neste mecanismo, a oxidação de α -ROOH gera radicais peroxila, que podem reagir entre si, formando um intermediário tetraóxido linear. Este intermediário tetraóxido linear pode decompor através de um mecanismo cíclico e produzir O2 (1Δg), um álcool e um composto carbonílico. Como a decomposição de α-ROOH pelo mecanismo de Russell pode ser uma importante fonte biológica de O2 (1Δg) decidimos investigar se o α-hidroperóxido de timina, 5-(hidroperoximetil)uracil (5-HMPU), poderia gerar esta espécie reativa na presença de metais (Ce4+, Fe2+, Cu2+) e HOCl. Outro objetivo foi avaliar os efeitos oxidativos, em DNA plasmidial (pBR322), da decomposição de 5-HPMU na presença de Cu2+. A geração de O2 (1Δg) na reação de 5-HPMU e Ce4+ ou HOCl foi demonstrada por meio do monitoramento da emissão de luz monomolecular de O2 (1Δg) na região do infravermelho próximo (IR-próximo, λ = 1270 nm) e bimolecular na região do visível (λ = 634 e 703 nm). A aquisição do espectro de emissão de O2 (1Δg) forneceu evidências inequívocas da geração desta espécie reativa na reação de 5-HPMU e Ce4+ ou HOCl. Além disto, a formação de O2 (1Δg) na reação de 5-HPMU e Fe2+, Cu2+ ou HOCl foi demonstrada através da captação química de O2 (1Δg) utilizando 9,10- divinilsulfonatoantraceno (AVS) e detecção por HPLC/MS/MS do endoperóxido (AVSO2) formado. A detecção por HPLC/MS/MS dos produtos de decomposição de 5-HPMU...


Oxidation of DNA by singlet molecular oxygen O2 (1Δg) can be involved in the development of mutations and diseases. In vivo, O2 (1Δg) can be generated by photosensitization reaction, H2O2 and HOCl reaction and decomposition of organic hydroperoxides with α-hydrogen (α-ROOH) in the presence of metal ions (Fe2+, Cu2+) or HOCl. The α-ROOH decomposition, such as lipid or protein hydroperoxides in the presence of metal ions or HOCl can generate O2 (1Δg) by Russell mechanism. In this mechanism, the self-reaction of peroxyl radicals generates a linear tetraoxide intermediate that decomposes to O2 (1Δg) , an alcohol and an aldehyde. Therefore, the purpose of this work is to investigate if O2 (1Δg) can be generated by α-thymine hydroperoxide, 5- (hydroperoxymethyl)uracil (5-HPMU) in the presence of Ce4+, Fe2+, Cu2+ or HOCl. Another purpose is to study base modification and strand breaks formation in plasmid DNA (pBR322) by 5-HPMU decomposition in the presence of Cu2+. The generation of O2 (1Δg) in the reaction of 5- HPMU and Ce4+ or HOCl was monitored by monomol light emission in the near-infrared region (NIR, λ = 1270 nm) and dimol light emission in the visible region (λ = 634 e 703 nm). The generation of O2 (1Δg) during the reaction of 5-HPMU and Ce4+ or HOCl was confirmed by acquisition of the light emission spectrum in the NIR. Furthermore, the generation of O2 (1Δg) produced by 5-HPMU and Fe2+, Cu2+ or HOCl was also confirmed by chemical trapping using anthracene-9,10-divinylsulfonate (AVS) and HPLC/MS/MS detection of the corresponding endoperoxide (AVSO2). The detection by HPLC/MS/MS of 5-(hydroxymethyl)uracil (5-HMU) and 5-formyluracil (5-FoU), two 5-HPMU decomposition products, support the Russell mechanism. Plasmid results from pBR322, 5-HPMU and Cu2+ reaction showed formation of DNA open circular form (OC), probably produced by 5-HPMU peroxyl and alkoxyl radicals. Additionally, the reaction of pBR322, 5-HPMU and Cu2+ following by Fpg and NTH enzyme treatment...


Assuntos
Oxidação Biológica/métodos , Oxigênio Singlete/química , Timina/síntese química , Cromatografia Líquida de Alta Pressão , Luminescência , Uracila/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...