Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 54(17): 5060-4, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25720828

RESUMO

Microimaging by IR microscopy is applied to the recording of the evolution of the concentration profiles of reactant and product molecules during catalytic reaction, notably during the hydrogenation of benzene to cyclohexane by nickel dispersed within a nanoporous glass. Being defined as the ratio between the reaction rate in the presence of and without diffusion limitation, the effectiveness factors of catalytic reactions were previously determined by deliberately varying the extent of transport limitation by changing a suitably chosen system parameter, such as the particle size and by comparison of the respective reaction rates. With the novel options of microimaging, effectiveness factors become accessible in a single measurement by simply monitoring the distribution of the reactant molecules over the catalyst particles.

2.
Langmuir ; 30(11): 3127-31, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24628481

RESUMO

The wetting dynamic on microrough and perfectly wetting (superhydrophilic) acrylates was studied. These surfaces were achieved by coating polymer films made of poly(ethyleneterephthalate) (PET) with a hydrophilic acrylate based on hydroxypropylacrylate and polyethyleneglycolmonoacrylate, which was then cured and microroughened by photonic microfolding. The high transparency of the thin acrylate layers and polymer films allowed us to record the spreading of an applied water droplet through the film samples. Subsequently, the dynamic radius of the spreading pattern rc(t) was determined from the video recording. Various models for the wetting dynamics of superhydrophilic surfaces, namely, Tanner's law and a roughness-modified derivation published by McHale et al. in 2009, were then compared to the experimental results. Basically, the development of rc(t) in time was found to be in good agreement with McHale's model. Data analysis showed, however, that the initial phase of the spreading, that is, for t < 1 s, was not predicted well. This differing behavior relates well to a theory published by Cazabat and Cohen Stuart, who proposed that, on rough surfaces, spreading follows a power law in three time regimes. In this model, the (very) initial spreading is expected to be similar to the spreading on a smooth surface.

3.
Phys Chem Chem Phys ; 12(10): 2380-91, 2010 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-20449351

RESUMO

The initiation mechanism of the VUV-induced conversion of polyorganosilazanes into methyl-Si-O-Si networks was studied by means of model disilazane compounds. A combined experimental approach was chosen to determine the primary radicals and their properties (lifetimes, spectra) as well as the major final products. It was verified that both Si-N and Si-CH(3) cleavage occur in the condensed phase, the former with higher yield. The lifetime of the primary Si- and N-centred radicals in de-oxygenated n-hexane solution is less than

Assuntos
Lasers , Silicones/química , Raios Ultravioleta , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres/química , Cromatografia Gasosa-Espectrometria de Massas , Fotólise , Controle de Qualidade
4.
Appl Spectrosc ; 63(2): 239-45, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19215655

RESUMO

The thickness of thin silica layers in the submicrometer range, i.e., between about 150 and 700 nm, was determined by near-infrared (NIR) reflection spectroscopy. Silica layers were prepared by spin-coating of perhydropolysilazane (PHPS) on silicon wafers or poly(ethylene terephthalate) (PET) foil and subsequent conversion of the PHPS into SiO(x) by vacuum ultraviolet (VUV) irradiation at 172 nm. Since the NIR spectra of the inorganic layers do not show overtone and combination bands, analysis is based on tiny differences in reflectance of samples provided with layers of different thicknesses. Quantitative investigations were carried out by use of chemometric approaches on the basis of the partial least squares (PLS) algorithm. Optimization of the chemometric models was achieved by systematic variation of the preprocessing of the spectra before application of the PLS regression. The root mean square error of prediction (RMSEP) and the coefficient of determination R(2) were used for the evaluation of the various pretreatment strategies. Reference data for the calibration procedures were obtained by means of gravimetry. The maximum error for the determination of the thickness was estimated to be on the order of 20%. The method was used to monitor the homogeneity of the thickness of silica layers made by use of a pilot scale coating machine. Thickness profiles recorded by NIR spectroscopy showed clear differences between layers with uniform or non-uniform quality of the application. Moreover, a close correlation of the profiles with the average coating weights determined by gravimetry was found.

5.
Chemistry ; 15(3): 675-83, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19040228

RESUMO

The vacuum-UV (VUV)-induced conversion of commercially available poly(1,1-dimethylsilazane-co-1-methylsilazane) into methyl-Si-O-Si networks was studied using UV sources at wavelengths around 172, 185, and 222 nm, respectively. Time-of-flight secondary ion mass spectroscopy (TOF-SIMS), X-ray photo electron spectroscopy (XPS), and Fourier transform infrared (FTIR) measurements, as well as kinetic investigations, were carried out to elucidate the degradation process. First-order kinetics were found for the photolytically induced decomposition of the Si-NH-Si network, the subsequent formation of the methyl-Si-O-Si network and the concomitant degradation of the Si-CH(3) bond, which were additionally independent of the photon energy above a threshold of about 5.5 eV (225 nm). The kinetics of these processes were, however, dependent on the dose actually absorbed by the layer and, in the case of Si-O-Si formation, additionally on the oxygen concentration. The release of ammonia and methane accompanied the conversion process. Quantum-chemical calculations on methyl substituted cyclotetrasilazanes as model compounds substantiate the suggested reaction scheme. Layers <100 nm in thickness based on mixtures of poly(1,1-dimethylsilazane-co-1-methylsilazane) and perhydropolysilazane (PHPS) were coated onto polyethylene terephthalate (PET) foils by a continuous roll to roll process and cured by VUV irradiation by using wavelengths <200 nm and investigated for their O(2) and water vapor-barrier properties. It was found that the resulting layers displayed oxygen and water vapor transmission rates (OTR and WVTR, respectively) of <1 cm(3) m(-2) d(-1) bar(-1) and <4 g m(-2) d(-1), respectively.

7.
Chemistry ; 13(30): 8522-9, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17639521

RESUMO

The photochemical conversion of 200-500 nm layers of perhydropolysilazane --(SiH2-NH)n-- (PHPS) in the presence of oxygen into an SiOx network was studied. Different UV sources in the wavelength range of 160-240 nm, that is, 172 nm Xe2* and 222 nm KrCl* excimer, and 185 nm Hg low-pressure (HgLP) lamps were used for these purposes. The role of both ozone and O(1D) as well as of catalytic amounts of tertiary amines in the degradation process of PHPS and the formation of SiOx were studied. In this context, the kinetics of the entire reaction were elucidated and allowed both a continuous and discontinuous process to be established for the production of fully transparent, flexible barrier coatings. Barrier improvement factors (BIFs) of 400 were achieved with one single layer on 23 microm poly(ethyleneterephthalate) (PET), which translated into oxygen transmission rates (OTRs) of 0.20 cm3 m(-2) day(-1) bar(-1). Double layers prepared by this technique allowed the realization of OTRs of or=800.

8.
Environ Sci Technol ; 37(2): 372-8, 2003 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-12564911

RESUMO

As a model for the electron-beam degradation of volatile aromatics (benzene, toluene, ethylbenzene, xylenes, BTEX) in groundwater strip gas, to be reported in Part 2, the gamma-radiolysis of benzene has been studied in aqueous solutions. Addition of *OH to the aromatic ring gives rise to hydroxycyclohexadienyl radicals which either dimerize or disproportionate. The various dimers undergo acid-catalyzed water elimination yielding biphenyl. Phenol is formed upon disproportionation directly, but also via dihydroxycyclohexadiene which subsequently undergoes acid-catalyzed water elimination. Co-radiolysis of benzene with nitrite generates *NO2 in addition to the hydroxycyclohexadienyl radical. These not only interact with one another (product: nitrobenzene via nitro-hydroxycyclohexadienes) but the *NO2 radical is also capable of abstracting cyclohexadienylic hydrogens. This reaction leads to the formation of 2- and 4-nitrophenol and to further nitrated products that were not identified. These are suggested to be formed in an analogous reaction of *NO2 with the hydroxycylohexadienyl dimers. The effect of O2 on these reactions and the relevance for the gas-phase radiolysis of BTEX is discussed.


Assuntos
Poluição Ambiental/prevenção & controle , Hidrocarbonetos Aromáticos/química , Modelos Químicos , Elétrons , Gases , Radical Hidroxila/química , Oxidantes/química , Poluentes do Solo , Volatilização
9.
Environ Sci Technol ; 37(2): 379-85, 2003 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-12564912

RESUMO

The electron-beam (EB) degradation of volatile aromatics (benzene, toluene, ethylbenzene, xylenes: BTEX) in groundwater strip gas, which in the present work has been modeled by the introduction of the desired aromatic(s) to a stream of air or another gas, such as oxygen, is initiated essentially by the addition of *OH radicals to the aromatic ring, giving rise to hydroxycyclohexadienyl radicals, which form the corresponding peroxyl radicals upon addition of oxygen. As studied in some detail with benzene as a BTEX representative, various reactions of these lead to numerous oxidation products in a cascade of reactions, including the decomposition of products under the prevailing conditions of high turnover of the initial aromatic. Importantly, hydroxycyclohexadienylperoxyl radical formation is partly reversible, and the reactions of the hydroxycyclohexadienyl radicals, which thus have a significant presence in these systems, must therefore also be taken into consideration. In the gas phase, in contrast to the aqueous phase (see Part 1), the reactions of the hydroxycyclohexadienyl radicals lead to oligomeric products that appear to contribute, in addition to ionic clusters, to nucleation for the aerosols observed. Various nitrated products, among them nitrophenols, are observed when air is used for the stripping. However, these studies did not clear the pilot plant stage, since BTEX degradation using a bioreactor carried out in parallel was so successful that the EB technology was judged to be noncompetitive. As for the latter, expensive equipment consisting of a stripper, the EB machine, and an aerosol precipitator would be required. The condensed aerosols are biorefractory and would require further treatment for detoxification.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Aerossóis , Reatores Biológicos , Elétrons , Gases , Oxirredução , Poluentes do Solo/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...