Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Semin Cancer Biol ; 83: 399-412, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-33039557

RESUMO

Tumour-promoting inflammation is a critical hallmark in cancer development, and inflammasomes are well-known regulators of inflammatory processes within the tumour microenvironment. Different inflammasome components along with the adaptor, apoptosis-associated speck-like protein containing caspase activation and recruitment domain (ASC), and the effector, caspase-1, have a significant influence on tumorigenesis but in a tissue-specific and stage-dependent manner. The downstream products of inflammasome activation, that is the proinflammatory cytokines such as IL-1ß and IL-18, regulate tissue homeostasis and induce antitumour immune responses, but in contrast, they can also favour cancer growth and proliferation by directing various oncogenic signalling pathways in cancer cells. Moreover, different epigenetic mechanisms, including DNA methylation, histone modification and noncoding RNAs, control inflammasomes and their components by regulating gene expression during cancer progression. Furthermore, autophagy, a master controller of cellular homeostasis, targets inflammasome-induced carcinogenesis by maintaining cellular homeostasis and removing potential cancer risk factors that promote inflammasome activation in support of tumorigenesis. Here, in this review, we summarize the effect of inflammasome activation in cancers and discuss the role of epigenetic and autophagic regulatory mechanisms in controlling inflammasomes. A proper understanding of the interactions among these key processes will be useful for developing novel therapeutic regimens for targeting inflammasomes in cancer.


Assuntos
Inflamassomos , Neoplasias , Autofagia/genética , Carcinogênese/genética , Epigênese Genética , Humanos , Inflamassomos/genética , Inflamassomos/metabolismo , Neoplasias/genética , Microambiente Tumoral/genética
2.
Br J Pharmacol ; 179(22): 5015-5035, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-33527371

RESUMO

Despite the potential of cancer medicine, cancer stem cells (CSCs) associated with chemoresistance and disease recurrence are the significant challenges currently opposing the efficacy of available cancer treatment options. Mitochondrial dynamics involving the fission-fusion cycle and mitophagy are the major contributing factors to better adaptation, enabling CSCs to survive and grow better under tumour micro-environment-associated stress. Moreover, mitophagy is balanced with mitochondrial biogenesis to maintain mitochondrial homeostasis in CSCs, which are necessary for the growth and maintenance of CSCs and regulate metabolic switching from glycolysis to oxidative phosphorylation. In this review, we discuss different aspects of mitochondrial dynamics, mitophagy, and mitochondrial homeostasis and their effects on modulating CSCs behaviour during cancer development. Moreover, the efficacy of pharmacological targeting of these cellular processes using anti-CSC drugs in combination with currently available chemotherapeutic drugs improves the patient's survival of aggressive cancer types.


Assuntos
Mitofagia , Neoplasias , Homeostase , Humanos , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Neoplasias/metabolismo , Células-Tronco Neoplásicas , Microambiente Tumoral
3.
Stem Cell Rev Rep ; 18(1): 198-213, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34355273

RESUMO

Cancer stem cells (CSCs) are rare populations of malignant cells with stem cell-like features of self-renewal, uninterrupted differentiation, tumorigenicity, and resistance to conventional therapeutic agents, and these cells have a decisive role in treatment failure and tumor relapse. The self-renewal potential of CSCs with atypical activation of developmental signaling pathways involves the maintenance of stemness to support cancer progression. The acquisition of stemness in CSCs has been accomplished through genetic and epigenetic rewiring following the metabolic switch. In this context, "metabostemness" denotes the metabolic parameters that essentially govern the epitranscriptional gene reprogramming mechanism to dedifferentiate tumor cells into CSCs. Several metabolites often referred to as oncometabolites can directly remodel chromatin structure and thereby influence the operation of epitranscriptional circuits. This integrated metaboloepigenetic dimension of CSCs favors the differentiated cells to move in dedifferentiated macrostates. Some metabolic events might perform as early drivers of epitranscriptional reprogramming; however, subsequent metabolic hits may govern the retention of stemness properties in the tumor mass. Interestingly, selective removal of mitochondria through autophagy can promote metabolic plasticity and alter metabolic states during differentiation and dedifferentiation. In this connection, novel metabostemness-specific drugs can be generated as potential cancer therapeutics to target the metaboloepigenetic circuitry to eliminate CSCs.


Assuntos
Mitofagia , Neoplasias , Diferenciação Celular/fisiologia , Humanos , Mitocôndrias/metabolismo , Mitofagia/genética , Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo
4.
Semin Cancer Biol ; 85: 196-208, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34500075

RESUMO

Autophagy, a lysosomal catabolic process, involves degradation of cellular materials, protein aggregate, and dysfunctional organelles to maintain cellular homeostasis. Strikingly, autophagy exhibits a dual-sided role in cancer; on the one hand, it promotes clearance of transformed cells and inhibits tumorigenesis, while cytoprotective autophagy has a role in sustaining cancer. The autophagy signaling in the tumor microenvironment (TME) during cancer growth and therapy is not adequately understood. The review highlights the role of autophagy signaling pathways to support cancer growth and progression in adaptation to the oxidative and hypoxic context of TME. Furthermore, autophagy contributes to regulating the metabolic switch for generating sufficient levels of high-energy metabolites, including amino acids, ketones, glutamine, and free fatty acids for cancer cell survival. Interestingly, autophagy has a critical role in modulating the tumor-associated fibroblast resulting in different cytokines and paracrine signaling mediated angiogenesis and invasion of pre-metastatic niches to secondary tumor sites. Moreover, autophagy promotes immune evasion to inhibit antitumor immunity, and autophagy inhibitors enhance response to immunotherapy with infiltration of immune cells to the TME niche. Furthermore, autophagy in TME maintains and supports the survival of cancer stem cells resulting in chemoresistance and therapy recurrence. Presently, drug repurposing has enabled the use of lysosomal inhibitor-based antimalarial drugs like chloroquine and hydroxychloroquine as clinically available autophagy inhibitors in cancer therapy. We focus on the recent developments of multiple autophagy modulators from pre-clinical trials and the challenges in developing autophagy-based cancer therapy.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Autofagia , Neoplasias/patologia , Transdução de Sinais , Neovascularização Patológica/metabolismo
5.
Int J Biochem Cell Biol ; 136: 106013, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34022434

RESUMO

The NLR family pyrin domain containing 3 (NLRP3) inflammasome is responsible for the sensation of various pathogenic and non-pathogenic damage signals and has a vital role in neuroinflammation and neural diseases. Various stimuli, such as microbial infection, misfolded protein aggregates, and aberrant deposition of proteins can induce NLRP3 inflammasome in neural cells. Once triggered, the NLRP3 inflammasome leads to the activation of caspase-1, which in turn activates inflammatory cytokines, such as interleukin-1ß and interleukin -18, and induces pyroptotic cell death. Mitochondria are critically involved in diverse cellular processes and are involved in regulating cellular redox status, calcium levels, inflammasome activation, and cell death. Mitochondrial dysfunction and subsequent accumulation of mitochondrial reactive oxygen species, mitochondrial deoxyribonucleic acid, and other mitochondria-associated proteins and lipids play vital roles in the instigation of the NLRP3 inflammasome. In addition, the processes of mitochondrial dynamics, such as fission and fusion, are essential in the maintenance of mitochondrial integrity and their imbalance also promotes NLRP3 inflammasome activation. In this connection, mitophagy-mediated maintenance of mitochondrial homeostasis restricts NLRP3 inflammasome hyperactivation and its consequences in various neurological disorders. Hence, mitophagy can be exploited as a potential strategy to target damaged mitochondria induced NLRP3 inflammasome activation and its lethal consequences. Therefore, the identification of novel mitophagy modulators has promising therapeutic potential for NLRP3 inflammasome-associated neuronal diseases.


Assuntos
Inflamassomos/metabolismo , Inflamação/patologia , Mitocôndrias/patologia , Proteínas Mitocondriais/metabolismo , Mitofagia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial
6.
Mitochondrion ; 57: 230-240, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33476771

RESUMO

Mitochondrial quality control is crucial for sustaining cellular maintenance. Mitochondrial Ca2+ plays an important role in the maintenance of mitochondrial quality control through regulation of mitochondrial dynamics, mitophagy and mitochondrial biogenesis for preserving cellular homeostasis. The regulation of this dynamic interlink between these mitochondrial networks and mitochondrial Ca2+ appears indispensable for the adaptation of cells under external stimuli. Moreover, dysregulation of mitochondrial Ca2+ divulges impaired mitochondrial control that results in several pathological conditions such as cancer. Hence this review untangles the interplay between mitochondrial Ca2+ and quality control that govern mitochondrial health and mitochondrial coordinates in the development of cancer.


Assuntos
Sinalização do Cálcio , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Cálcio/metabolismo , Diferenciação Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Dinâmica Mitocondrial
7.
Biochim Biophys Acta Rev Cancer ; 1875(2): 188500, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33385484

RESUMO

Clusterin (CLU) is an evolutionary conserved molecular chaperone present in different human tissues and fluids and established to be a significant cancer regulator. It controls several cancer-associated cellular events, including cancer cell proliferation, stemness, survival, metastasis, epithelial-mesenchymal transition, therapy resistance, and inhibition of programmed cell death to support cancer growth and recurrence. This multifunctional role of CLU makes it an ideal target for cancer control. More importantly, genetic and antisense-mediated (OGX-011) inhibition of CLU enhances the anticancer potential of different FDA-approved chemotherapeutic drugs at the clinical level, improving patient's survival. In this review, we have discussed the detailed mechanism of CLU-mediated modulation of different cancer-associated signaling pathways. We have also provided updated information on the current preclinical and clinical findings that drive trials in various cancer types for potential targeted cancer therapy.


Assuntos
Clusterina/genética , Clusterina/metabolismo , Neoplasias/metabolismo , Clusterina/antagonistas & inibidores , Sinergismo Farmacológico , Tratamento Farmacológico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Tionucleotídeos/farmacologia , Tionucleotídeos/uso terapêutico
8.
Life Sci ; 264: 118722, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33160989

RESUMO

AIMS: Secretory clusterin (sCLU) plays an important role in tumor development and cancer progression. However, the molecular mechanisms and physiological functions of sCLU in oral cancer is unclear. We examined the impact of sCLU-mediated autophagy in cell survival and apoptosis inhibition in oral cancer. MAIN METHODS: Immunohistochemical analysis was performed to analyze protein expression in patient samples. Autophagy and mitophagy was studied by immunofluorescence microscopy and Western blot. The gain and loss of function was studied by overexpression of plasmid and siRNA approaches respectively. Cellular protection against nutrient starvation and therapeutic stress by sCLU was studied by cell viability, caspase assay and meta-analysis. KEY FINDINGS: The data from oral cancer patients showed that the expression levels of sCLU, ATG14, ULK1, and PARKIN increased in grade-wise manners. Interestingly, sCLU overexpression promoted autophagy through AMPK/Akt/mTOR signaling pathway leading to cell survival and protection from long exposure serum starvation induced-apoptosis. Additionally, sCLU was demonstrated to interact with ULK1 and inhibition of ULK1 activity by SBI206965 was found to abolish sCLU-induced autophagy indicating critical role of ULK1 in induction of autophagy. Furthermore, sCLU was observed to promote expression of mitophagy-associated proteins in serum starvation conditions to protect cells from nutrient deprivation. The meta-analysis elucidated that high CLU expression is associated with therapy resistance in cancer and we demonstrated that sCLU-mediated mitophagy was revealed to inhibit cell death by cisplatin. SIGNIFICANCE: The present investigation has highlighted the probable implications of the clusterin-induced autophagy in cell survival and inhibition of apoptosis in oral cancer.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Autofagia , Clusterina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Bucais/patologia , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Apoptose/genética , Autofagia/genética , Linhagem Celular Tumoral , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Mitofagia/genética , Neoplasias Bucais/genética , Neoplasias de Células Escamosas/genética , Neoplasias de Células Escamosas/patologia
9.
Cancer Lett ; 498: 217-228, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33186655

RESUMO

Cancer stem cells (CSCs) are distinct subpopulations of cancer cells with stem cell-like abilities and are more resilient to chemotherapy, causing tumor relapse. Mitophagy, a selective form of autophagy, removes damaged unwanted mitochondria from cells through a lysosome-based degradation pathway to maintain cellular homeostasis. CSCs use mitophagy as a chief survival response mechanism for their growth, propagation, and tumorigenic ability. Mitochondrial biogenesis is a crucial cellular event replacing damaged mitochondria through the coordinated regulation of several transcription factors to achieve the bioenergetic demands of the cell. Because of the high mitochondrial content in CSCs, mitochondrial biogenesis is an interesting target to address the resistance mechanisms of anti-CSC therapy. However, to what extent both mitophagy and mitochondrial biogenesis are vital in promoting stemness, metabolic reprogramming, and drug resistance in CSCs has yet to be established. Therefore, in this review, we focus on understanding the interesting aspects of mitochondrial rewiring that involve mitophagy and mitochondrial biogenesis in CSCs. We also discuss their coordinated regulation in the elimination of CSCs, with respect to stemness and differentiation of the CSC phenotype, and the different aspects of tumorigenesis such as cancer initiation, progression, resistance, and tumor relapse. Finally, we address several other unanswered questions relating to targeted anti-CSC cancer therapy, which improves patient survival.


Assuntos
Mitocôndrias/patologia , Mitocôndrias/fisiologia , Mitofagia/fisiologia , Células-Tronco Neoplásicas/patologia , Diferenciação Celular/fisiologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Humanos , Biogênese de Organelas
10.
Mol Biol Rep ; 47(9): 7209-7228, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32797349

RESUMO

Marine invertebrates are extremely diverse, largely productive, untapped oceanic resources with chemically unique bioactive lead compound contributing a wide range of screening for the discovery of anticancer compounds. The lead compounds have unfurled an extensive array of pharmacological properties owing to the presence of polyphenols, alkaloids, terpenoids and other secondary metabolites. The antioxidant, immunomodulatory and anti-tumor activities exhibited, are possibly regulated by the apoptosis induction, scavenging of ROS and modulation of cellular signaling pathways to defy the cellular deafness during carcinogenesis. Despite the enriched bioactive compounds, the marine invertebrates are largely unexplored as identification, screening, pre-clinical and clinical assessment of lead compounds and their synthetic analogs remain a major task to be solved. In the current review, we focus on the principle strategy and underlying mechanisms deployed by the bioactive anticancer compounds derived from marine invertebrates to combat cancer with special insight into the cell death mechanism.


Assuntos
Antineoplásicos , Organismos Aquáticos/química , Invertebrados/química , Neoplasias , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Morte Celular/efeitos dos fármacos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia
11.
Free Radic Biol Med ; 160: 111-124, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32755671

RESUMO

Ionizing radiation has the potential to cause structural modification or change in electrochemical properties in parent lead pharmacophores that exhibit enhanced bioactivity. Gallic acid (GA), a triphenolic compound has displayed potent anticancer drug potency due to its withstanding antioxidant propensity. This study uncovered the comparative efficacy of gamma-irradiated gallic acid (GAIR) in the modulation of an antioxidant system for regulation apoptosis and autophagy. GAIR exhibited remarkable anti-proliferative efficacy as shown by MTT, clonogenic survival, and scratch assay. In addition to this, GAIR promoted intrinsic apoptosis through mitochondrial superoxide generation. GAIR decreased the activity of antioxidant enzymes by downregulating nuclear factor erythroid 2-related factor 2 (NRF2) and its downstream effector molecules NAD(P)H Quinone Dehydrogenase 1 (NQO1) and gamma-glutamylcysteine synthetase (GCLC). Simultaneously, GAIR attenuated autophagosome-lysosome fusion without altering the lysosomal activity. Inhibition of autophagic flux resulted in the accumulation of lipid droplets (LDs) such as hexadecanoic acid and oleic acid that fuelled superoxide generation leading to apoptosis. In the meantime, under oxidative upset, conversion of LDs to free fatty acids reduced leading to inhibition of ATP generation that subsequently provoked apoptosis. The effects of autophagy inhibition by GAIR on the therapeutic efficacy of chemotherapeutic drugs was studied and the co-treatment markedly decreased the cell viability and increased apoptosis. Further, GAIR exhibited potent antitumor activity in Dalton's Lymphoma-tumor bearing mice through modulation of apoptosis and autophagy without toxic activity. In conclusion, change in electrochemical properties by gamma radiation enhances the anticancer efficacy of gallic acid through superoxide mediated apoptosis fuelled by inhibition of lipophagy in an NRF2 dependent signaling pathway.


Assuntos
Apoptose , Autofagia , Ácido Gálico , Fator 2 Relacionado a NF-E2 , Animais , Ácido Gálico/farmacologia , Camundongos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio , Transdução de Sinais
12.
J Cell Physiol ; 235(3): 2776-2791, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31544977

RESUMO

Therapy-induced senescence in cancer cells is an irreversible antiproliferative state, which inhibits tumor growth and is therefore a potent anti-neoplastic mechanism. In this study, low doses of Abrus agglutinin (AGG)-induced senescence through autophagy in prostate carcinoma cells (PC3) and inhibited proliferation. The inhibition of autophagy with 3-methyl adenine reversed AGG-induced senescence, thus confirming that AGG-triggered senescence required autophagy. AGG treatment also led to lipophagy-mediated accumulation of free fatty acids (FFAs), with a concomitant decrease in the number of lipid droplets. Lalistat, a lysosomal acid lipase inhibitor, abrogated AGG-induced lipophagy and senescence in PC3 cells, indicating that lipophagy is essential for AGG-induced senescence. The accumulation of FFAs increased reactive oxygen species generation, a known facilitator of senescence, which was also reduced in the presence of lalistat. Furthermore, AGG upregulated silent mating type information regulator 2 homolog 1 (SIRT1), while the presence of sirtinol reduced autophagy flux and the senescent phenotype in the AGG-treated cells. Mechanistically, AGG-induced cytoplasmic SIRT1 deacetylated a Lys residue on the cytoplasmic domain of lysosome-associated membrane protein 1 (LAMP1), an autolysosomal protein, resulting in lipophagy and senescence. Taken together, our findings demonstrate a novel SIRT1/LAMP1/lipophagy axis mediating AGG-induced senescence in prostate cancer cells.


Assuntos
Autofagia/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Ácidos Graxos não Esterificados/biossíntese , Proteínas de Membrana Lisossomal/metabolismo , Lectinas de Plantas/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Adenina/análogos & derivados , Adenina/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Autofagia/fisiologia , Benzamidas/farmacologia , Carbamatos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Senescência Celular/fisiologia , Humanos , Masculino , Naftóis/farmacologia , Células PC-3 , Neoplasias da Próstata/patologia , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1/metabolismo , Esterol Esterase/antagonistas & inibidores , Tiadiazóis/farmacologia , Regulação para Cima/efeitos dos fármacos
13.
Food Chem Toxicol ; 136: 111073, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31877368

RESUMO

Terminalia bellirica (TB) has been used in traditional Indian medical system, Ayurveda. However, the mechanism underlying the efficacy of the TB extract against oral squamous cell carcinoma (OSCC) is yet to be explored. The present study established a connecting link between the TB extract induced apoptosis and autophagy in relation to reactive oxygen species (ROS). Our study revealed, that gallic acid in the TB extract possess a strong free radical scavenging capacity contributing towards the selective anti-proliferative activity. Furthermore, TB extract markedly enhanced the accumulation of ROS that facilitated mitochondrial apoptosis through DNA damage, indicating ROS as the vital component in regulation of apoptosis. This effect was effectively reversed by the use of a ROS scavenger, N-acetyl cysteine (NAC). Moreover, it was observed to induce autophagy; however, it attenuated the autophagosome-lysosome fusion in Cal33 cells without altering the lysosomal activity. Pharmacological inhibitors of autophagy, namely, 3-methyladenine and chloroquine, were demonstarated to regulate the stage-specific progression of autophagy post treatment with the TB extract, favouring subsequent activation of apoptosis. These findings revealed, presence of gallic acid in TB extract below NOAEL value causes oxidative upset in oral cancer cells and promote programmed cell death which has a potential therapeutic value against oral squamous cell carcinoma.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias Bucais/fisiopatologia , Extratos Vegetais/farmacologia , Terminalia/química , Antineoplásicos Alquilantes/análise , Carcinoma de Células Escamosas , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Humanos , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/metabolismo , Extratos Vegetais/análise , Espécies Reativas de Oxigênio/metabolismo
15.
Biochim Biophys Acta Mol Cell Res ; 1865(3): 480-495, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29229477

RESUMO

PUMA, a BH3-only pro-apoptotic Bcl2 family protein, is known to translocate from the cytosol into the mitochondria in order to induce apoptosis. Interestingly, the induction of PUMA by p53 plays a critical role in DNA damage-induced apoptosis. In this study, we reported mitophagy inducing potential of PUMA triggered by phytolectin Abrus agglutinin (AGG) in U87MG glioblastoma cells and established AGG-induced ceramide acts as the chief mediator of mitophagy dependent cell death through activation of both mitochondrial ROS as well as ER stress. Importantly, AGG upregulates PUMA expression in U87MG cells with the generation of dysfunctional mitochondria, with gain and loss of function of PUMA is shown to alter mitophagy induction. At the molecular level, our study identified that the LC3 interacting region (LIR) located at the C-terminal end of PUMA interacts with LC3 in order to stimulate mitophagy. In addition, AGG is also found to trigger ubiquitination of PUMA which in turn interacted with p62 for prompting mitophagy suggesting that AGG turns on PUMA-mediated mitophagy in U87MG cells in both p62-dependent as well as in p62-independent manner. Interestingly, AGG-triggered ceramide production through activation of ceramide synthase-1 leads to induction of ER stress and ROS accumulation to promote mitochondrial damage as well as mitophagy. Further, upon pre-treatment with Mdivi-1, DRP1 inhibitor, AGG exposure results in suppression of apoptosis in U87MG cells indicating AGG-induced mitophagy switches to apoptosis that can be exploited for better cancer therapeutics.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Mitofagia/genética , Neoplasias/tratamento farmacológico , Lectinas de Plantas/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas/genética , Apoptose/genética , Ceramidas/biossíntese , Ceramidas/genética , Citosol/metabolismo , Dano ao DNA/genética , Células HeLa , Humanos , Mitocôndrias/genética , Neoplasias/genética , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
16.
Free Radic Biol Med ; 104: 199-213, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28069524

RESUMO

Understanding the dynamics of autophagy and apoptosis crosstalk in cancer progression remains a challenging task. Here, we reported how the autophagy protein ATG14 induces lipophagy-mediated mitochondrial apoptosis. The overexpression of ATG14 in HeLa cells inhibited cell viability and increased mitochondrial apoptosis and endoplasmic reticulum (ER) stress. Furthermore, inhibition of this ATG14-induced autophagy promoted apoptosis. ATG14 overexpression resulted in the accumulation of free fatty acids (FFA), with a concomitant decrease in the number of lipid droplets. Our data showed that ER stress induced by ATG14 was due to the lipophagy-mediated FFA accumulation, which resulted in ROS-dependent mitochondrial stress leading to apoptosis. Inhibition of lipophagy in HeLa-ATG14 cells enhanced the cellular viability and rescued them from lipotoxicity. Mechanistically, we found that ATG14 interacted with Ulk1 and LC3, and knock down of Ulk1 prevented the lipidation of LC3 and autophagy in HeLa-ATG14 cells. We also identified a phosphatidylethanolamine (PE) binding region in ATG14, and the addition of Ulk1 to Hela-ATG14 cells decreased the ATG14-PE interaction. Lastly, confocal microscopy studies showed that the decrease in ATG14-PE binding was concomitant with the increase in LC3 lipidation over time, confirming the importance of Ulk1 to sort PE to LC3 during ATG14 mediated lipophagy induction. In conclusion, ATG14 and Ulk1 interact to induce lipophagy resulting in FFA accumulation leading to ER stress-mediated apoptosis.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteínas Relacionadas à Autofagia/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Associadas aos Microtúbulos/genética , Neoplasias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Apoptose/genética , Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Estresse do Retículo Endoplasmático/genética , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/genética , Mitocôndrias/patologia , Neoplasias/patologia , Fosfatidiletanolaminas/metabolismo , Ligação Proteica , Transdução de Sinais/efeitos dos fármacos
17.
Oral Oncol ; 62: 122-135, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27865365

RESUMO

Conventional therapeutics are often frequented with recurrences, refraction and regimen resistance in oral cavity cancers which are predominantly manifested by cancer stem cells (CSCs). During oncoevolution, cancer cells may undergo structural and functional reprogramming wherein they evolve as highly tolerant CSC phenotypes with greater survival advantages. The CSCs possess inherent and exclusive properties including self-renewal, hierarchical differentiation, and tumorigenicity that serve as the basis of chemo-radio-resistance in oral cancer. However, the key mechanisms underlying the CSC-mediated therapy resistance need to be further elucidated. A spectrum of dysfunctional cellular pathways including the developmental signaling, apoptosis, autophagy, cell cycle regulation, DNA damage responses and epigenetic regulations protect the CSCs from conventional therapies. Moreover, tumor niche shelters CSCs and creates an immunosuppressive environment favoring the survival of CSCs. Maintenance of lower redox status, epithelial-to-mesenchymal transition (EMT), metabolic reprogramming and altered drug responses are the accessory features that aid in the process of chemo-radio-resistance in oral CSCs. This review deals with the functional and molecular basis of cancer cell pluripotency-associated resistance highlighting the abrupt fundamental cellular processes; targeting these events may hold a great promise in the successful treatment of oral cancer.


Assuntos
Neoplasias Bucais/patologia , Células-Tronco Neoplásicas/patologia , Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias Bucais/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...