Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 113(12): 2796-2804, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29262372

RESUMO

Proprioception is an integral part of the feedback circuit that is essential for locomotion control in all animals. Chordotonal organs perform proprioceptive and other mechanosensory functions in insects and crustaceans. The mechanical properties of these organs are believed to be adapted to the sensory functions, but had not been probed directly. We measured mechanical properties of a particular chordotonal organ-the lateral pentascolopidial (lch5) organ of Drosophila larvae-which plays a key role in proprioceptive locomotion control. We applied tension to the whole organ in situ by transverse deflection. Upon release of force, the organ displayed overdamped relaxation with two widely separated time constants, tens of milliseconds and seconds, respectively. When the muscles covering the lch5 organ were excised, the slow relaxation was absent, and the fast relaxation became faster. Interestingly, most of the strain in the stretched organ is localized in the cap cells, which account for two-thirds of the length of the entire organ, and could be stretched by ∼10% without apparent damage. In laser ablation experiments we found that cap cells retracted by ∼100 µm after being severed from the neurons, indicating considerable steady-state stress and strain in these cells. Given the fact that actin as well as myosin motors are abundant in cap cells, the results point to a mechanical regulatory role of the cap cells in the lch5 organ.


Assuntos
Drosophila melanogaster , Larva , Fenômenos Mecânicos , Animais , Fenômenos Biomecânicos , Elasticidade , Lasers
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...