Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 118(13): 133904, 2017 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-28409947

RESUMO

Quantum field theory predicts that a spatially homogeneous but temporally varying medium will excite photon pairs out of the vacuum state. However, this important theoretical prediction lacks experimental verification due to the difficulty in attaining the required nonadiabatic and large amplitude changes in the medium. Recent work has shown that in epsilon-near-zero (ENZ) materials it is possible to optically induce changes of the refractive index of the order of unity, in femtosecond time scales. By studying the quantum field theory of a spatially homogeneous, time-varying ENZ medium, we theoretically predict photon-pair production that is up to several orders of magnitude larger than in non-ENZ time-varying materials. We also find that while in standard materials the emission spectrum depends on the time scale of the perturbation, in ENZ materials the emission is always peaked at the ENZ wavelength. These studies pave the way to technologically feasible observation of photon-pair emission from a time-varying background with implications for quantum field theories beyond condensed matter systems and with potential applications as a new source of entangled light.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...