Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(23): 10779-10787, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37987745

RESUMO

Electrochemical reduction of CO2 using Cu catalysts enables the synthesis of C2+ products including C2H4 and C2H5OH. In this study, Cu catalysts were fabricated using plasma-enhanced atomic layer deposition (PEALD), achieving conformal deposition of catalysts throughout 3-D gas diffusion electrode (GDE) substrates while maintaining tunable control of Cu nanoparticle size and areal loading. The electrochemical CO2 reduction at the Cu surface yielded a total Faradaic efficiency (FE) > 75% for C2+ products. Parasitic hydrogen evolution was minimized to a FE of ∼10%, and a selectivity of 42.2% FE for C2H4 was demonstrated. Compared to a line-of-sight physical vapor deposition method, PEALD Cu catalysts show significant suppression of C1 products compared to C2+, which is associated with improved control of catalyst morphology and conformality within the porous GDE substrate. Finally, PEALD Cu catalysts demonstrated a stable performance for 15 h with minimal reduction in the C2H4 production rate.

2.
Lab Chip ; 22(12): 2299-2306, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35451445

RESUMO

Liquid-liquid phase separation (LLPS), also known as oiling-out, is the appearance of the second liquid phase preceding the crystallization. LLPS is an undesirable phenomenon that can occur during the crystallization of active pharmaceutical ingredients (APIs), proteins, and polymers. It is typically avoided during crystallization due to its detrimental impacts on crystalline products due to lowered crystallization rate, the inclusion of impurities, and alteration in particle morphology and size distribution. In situ monitoring of phase separation enables investigating LLPS and identifying the phase separation boundaries. Various process analytical technologies (PATs) have been implemented to determine the LLPS boundaries prior to crystallization to prevent oiling out of compounds. The LLPS measurements using PATs can be time-consuming, expensive, and challenging. Here, we have implemented a fully integrated continuous-flow microfluidic device with a turbidity sensor to quickly and accurately evaluate the LLPS boundaries for a ß-alanine, water, and IPA mixture. The turbidity-sensor-integrated continuous-flow microfluidic device is also placed under an optical microscope to visually track and record the appearance and disappearance of oil droplets. Streams of an aqueous solution of ß-alanine, pure solvent (water), and pure antisolvent (IPA or ethanol) are pumped into the continuous-flow microfluidic device at various flow rates to obtain the compositions at which the solution becomes turbid. The onset of turbidity is measured using a custom-designed, in-line turbidity sensor. The LLPS boundaries can be estimated using the turbidity-sensor-integrated microfluidic device in less than 30 min, which will significantly improve and enhance the workflow of the pharmaceutical drug (or crystalline material) development process.


Assuntos
Dispositivos Lab-On-A-Chip , Água , Cristalização , Preparações Farmacêuticas , Água/química , beta-Alanina
3.
ACS Sens ; 7(3): 797-805, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35045697

RESUMO

Integrating sensors in miniaturized devices allow for fast and sensitive detection and precise control of experimental conditions. One of the potential applications of a sensor-integrated microfluidic system is to measure the solute concentration during crystallization. In this study, a continuous-flow microfluidic mixer is paired with an electrochemical sensor to enable in situ measurement of the supersaturation. This sensor is investigated as the predictive measurement of the supersaturation during the antisolvent crystallization of l-histidine in the water-ethanol mixture. Among the various metals tested in a batch system for their sensitivity toward l-histidine, Pt showed the highest sensitivity. A Pt-printed electrode was inserted in the continuous-flow microfluidic mixer, and the cyclic voltammograms of the system were obtained for different concentrations of l-histidine and different water-to-ethanol ratios. The sensor was calibrated for different ratios of antisolvent and concentrations of l-histidine with respect to the change of the measured anodic slope. Additionally, a machine-learning algorithm using neural networks was developed to predict the supersaturation of l-histidine from the measured anodic slope. The electrochemical sensors have shown sensitivity toward l-histidine, l-glutamic acid, and o-aminobenzoic acid, which consist of functional groups present in almost 80% of small-molecule drugs on the market. The machine learning-guided electrochemical sensors can be applied to other small molecules with similar functional groups for automated screening of crystallization conditions in microfluidic devices.


Assuntos
Dispositivos Lab-On-A-Chip , Microfluídica , Etanol , Histidina , Aprendizado de Máquina , Microfluídica/métodos , Água
4.
Lab Chip ; 22(2): 211-224, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34989369

RESUMO

Metal-organic frameworks (MOFs) are porous crystalline structures that are composed of coordinated metal ligands and organic linkers. Due to their high porosity, ultra-high surface-to-volume ratio, and chemical and structural flexibility, MOFs have numerous applications. MOFs are primarily synthesized in batch reactors under harsh conditions and long synthesis times. The continuous depletion of metal ligands and linkers in batch processes affects the kinetics of the oligomerization reaction and, hence, their nucleation and growth rates. Therefore, the existing screening systems that rely on batch processes, such as microtiter plates and droplet-based microfluidics, do not provide reliable nucleation and growth rate data. Significant challenges still exist for developing a relatively inexpensive, safe, and readily scalable screening device and ensuring consistency of results before scaling up. Here, we have designed patterned-surface microfluidic devices for continuous-flow synthesis of MOFs that allow effective and rapid screening of synthesis conditions. The patterned surface reduces the induction time of MOF synthesis for rapid screening while providing support to capture MOF crystals for growth measurements. The efficacy of the continuous-flow patterned microfluidic device to screen polymorphs, morphology, and growth rates is demonstrated for the HKUST-1 MOF. The effects of solvent composition and pH modulators on the morphology, polymorphs, and size distribution of HKUST-1 are evaluated using the patterned microfluidic device. Additionally, a time-resolved FT-IR analysis coupled with the patterned microfluidic device provides quantitative insights into the non-monotonic growth of MOF crystals with respect to the progression of the bulk oligomerization reaction. The patterned microfluidic device can be used to screen crystals with a longer induction time, such as proteins, covalent-organic frameworks, and MOFs.


Assuntos
Estruturas Metalorgânicas , Dispositivos Lab-On-A-Chip , Estruturas Metalorgânicas/química , Microfluídica , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Adv Mater ; 33(31): e2100347, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34173281

RESUMO

High-entropy alloys combine multiple principal elements at a near equal fraction to form vast compositional spaces to achieve outstanding functionalities that are absent in alloys with one or two principal elements. Here, the prediction, synthesis, and multiscale characterization of 2D high-entropy transition metal dichalcogenide (TMDC) alloys with four/five transition metals is reported. Of these, the electrochemical performance of a five-component alloy with the highest configurational entropy, (MoWVNbTa)S2 , is investigated for CO2 conversion to CO, revealing an excellent current density of 0.51 A cm-2 and a turnover frequency of 58.3 s-1 at ≈ -0.8 V versus reversible hydrogen electrode. First-principles calculations show that the superior CO2 electroreduction is due to a multi-site catalysis wherein the atomic-scale disorder optimizes the rate-limiting step of CO desorption by facilitating isolated transition metal edge sites with weak CO binding. 2D high-entropy TMDC alloys provide a materials platform to design superior catalysts for many electrochemical systems.

6.
Proc Natl Acad Sci U S A ; 118(8)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33597304

RESUMO

Electrochemical oxidation of CH4 is known to be inefficient in aqueous electrolytes. The lower activity of methane oxidation reaction (MOR) is primarily attributed to the dominant oxygen evolution reaction (OER) and the higher barrier for CH4 activation on transition metal oxides (TMOs). However, a satisfactory explanation for the origins of such lower activity of MOR on TMOs, along with the enabling strategies to partially oxidize CH4 to CH3OH, have not been developed yet. We report here the activation of CH4 is governed by a previously unrecognized consequence of electrostatic (or Madelung) potential of metal atom in TMOs. The measured binding energies of CH4 on 12 different TMOs scale linearly with the Madelung potentials of the metal in the TMOs. The MOR active TMOs are the ones with higher CH4 binding energy and lower Madelung potential. Out of 12 TMOs studied here, only TiO2, IrO2, PbO2, and PtO2 are active for MOR, where the stable active site is the O on top of the metal in TMOs. The reaction pathway for MOR proceeds primarily through *CH x intermediates at lower potentials and through *CH3OH intermediates at higher potentials. The key MOR intermediate *CH3OH is identified on TiO2 under operando conditions at higher potential using transient open-circuit potential measurement. To minimize the overoxidation of *CH3OH, a bimetallic Cu2O3 on TiO2 catalysts is developed, in which Cu reduces the barrier for the reaction of *CH3 and *OH and facilitates the desorption of *CH3OH. The highest faradaic efficiency of 6% is obtained using Cu-Ti bimetallic TMO.

7.
ACS Appl Mater Interfaces ; 12(35): 39772-39780, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32805940

RESUMO

Interfacing two-dimensional graphene oxide (GO) platelets with one-dimensional zinc oxide nanorods (ZnO) would create mixed-dimensional heterostructures suitable for modern optoelectronic devices. However, there remains a lack in understanding of interfacial chemistry and wettability in GO-coated ZnO nanorods heterostructures. Here, we propose a hydroxyl-based dissociation-exchange mechanism to understand interfacial interactions responsible for GO adsorption onto ZnO nanorods hydrophobic substrates. The proposed mechanism initiated from mixing GO suspensions with various organics would allow us to overcome the poor wettability (θ ∼ 140.5°) of the superhydrophobic ZnO nanorods to the drop-casted GO. The addition of different classes of organics into the relatively high pH GO suspension with a volumetric ratio of 1:3 (organic-to-GO) is believed to introduce free radicals (-OH and -COOH), which consequently result in enhancing adhesion (chemisorption) between ZnO nanorods and GO platelets. The wettability study shows as high as 75% reduction in the contact angle (θ = 35.5°) when the GO suspension is mixed with alcohols (e.g., ethanol) prior to interfacing with ZnO nanorods. The interfacial chemistry developed here brings forth a scalable tool for designing graphene-coated ZnO heterojunctions for photovoltaics, photocatalysis, biosensors, and UV detectors.

8.
Trans Indian Natl Acad Eng ; 5(2): 281-287, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-38624422

RESUMO

This paper describes a robust autonomous disinfection tunnel to disinfect external surfaces of COVID-19 virus such as clothes and open body sections in public places such as airports, office complexes, schools, and malls. To make the tunnel effective and highly efficient, it has been provided with two chambers with three disinfection processes. Due to the multiple processes, the possibility of neutralizing the virus is quite high and higher than other solutions available at this point for this purpose. Chamber 1 sprays the solution of a disinfectant on the person. This solution can be either a dilute solution of approved chemical or any Ayurvedic/herbal disinfectant. Once the person enters chamber 2, he/she is exposed to hot air at 70 °C along with far-ultraviolet C rays (207-222 nm). Both chambers function autonomously by detecting a person in a chamber using ultrasonic sensors. The proposed tunnel is developed under industry-academia collaboration jointly by Technopark@iitk and ALIMCO under the ambit of the Ministry of Human Resources Development and the Ministry of Social Justice and Empowerment, respectively. The tunnel is referred to as the 'Techno Advanced Disinfection Tunnel' (TADT).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...