Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Plant Physiol ; 244: 153088, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31812906

RESUMO

Zinc (Zn) is one of the important elements of plant growth, however, at elevated level it is toxic. Exposure of Chinese cabbage to elevated Zn2+ concentrations (5 and 10 µM ZnCl2) resulted in enhancement of total sulfur and organic sulfur concentration. Transcript level of APS reductase (APR) as a key enzyme in biosynthesis of primary sulfur compounds (cysteine and thiols), was up-regulated in both shoot and root upon exposure to elevated Zn2+, which was accompanied by an increase in the concentration of cysteine in both tissues. In contrast, the concentration of thiols increased only in the root by 5.5 and 15-fold at 5 and 10 µM Zn2+, respectively, which was in accompanied by an upregulation of ATP sulfurylase, an enzyme responsible for activation of sulfate. An elevated content of glucosinolates, mostly indolic glucosinolates, only in the shoot of plants exposed to excess level of Zn2+ coincided with an increase in gene expression of key biosynthetic enzymes and regulators (CYP79B3, CYP83B1, MYB34). Thus distinct acuumulation patterns of sulfur containing compounds in root and shoot of Chinese cabbage may be a strategy for Chinese cabbage to combat with exposure to excess Zn.


Assuntos
Brassica/metabolismo , Glucosinolatos/metabolismo , Proteínas de Plantas/metabolismo , Compostos de Sulfidrila/metabolismo , Zinco/administração & dosagem , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Regulação para Cima
2.
Front Plant Sci ; 7: 541, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27200018

RESUMO

Sulfur deficiency in plants has severe impacts on both growth and nutrient composition. Fumigation with sub-lethal concentrations of H2S facilitates the supply of reduced sulfur via the leaves while sulfate is depleted from the roots. This restores growth while sulfate levels in the plant tissue remain low. In the present study this system was used to reveal interactions of sulfur with other nutrients in the plant and to ascertain whether these changes are due to the absence or presence of sulfate or rather to changes in growth and organic sulfur. There was a complex reaction of the mineral composition to sulfur deficiency, however, the changes in content of many nutrients were prevented by H2S fumigation. Under sulfur deficiency these nutrients accumulated on a fresh weight basis but were diluted on a dry weight basis, presumably due to a higher dry matter content. The pattern differed, however, between leaves and roots which led to changes in shoot to root partitioning. Only the potassium, molybdenum and zinc contents were strongly linked to the sulfate supply. Potassium was the only nutrient amongst those measured which showed a positive correlation with sulfur content in shoots, highlighting a role as a counter cation for sulfate during xylem loading and vacuolar storage in leaves. This was supported by an accumulation of potassium in roots of the sulfur-deprived plants. Molybdenum and zinc increased substantially under sulfur deficiency, which was only partly prevented by H2S fumigation. While the causes of increased molybdenum under sulfur deficiency have been previously studied, the relation between sulfate and zinc uptake needs further clarification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...