Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Biother Radiopharm ; 39(1): 1-18, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37585602

RESUMO

Cancer chemotherapy has been shifted from conventional cytotoxic drug therapy to selective and target-specific therapy after the findings about DNA changes and proteins that are responsible for cancer. A large number of newer drugs were discovered as targeted therapy for particular types of neoplastic disease. The initial discovery includes the development of the first in the category, imatinib, a Bcr-Abl tyrosine kinase inhibitor (TKI) for the treatment of chronic myelocytic leukemia in 2001. But the joy did not last for long as the drug developed a point mutation within the ABL1 kinase domain of BCR-ABL1, which subsequently led to the discovery of many other TKIs. Resistance was observed for newer TKIs a few years after their launching, but the use of TKIs in life-threatening cancer therapy is considered as far better compared with the risks of disease because of its target specificity and hence less toxicity. In search of a better anticancer agent, the physiochemical properties of the lead molecule have been modified for its efficacy toward disease and delay in the development of resistance. Deuteration in the drug molecule is one of such modifications that alter the pharmacokinetic properties, generally its metabolism, as compared with its pharmacodynamic effects. Precision deuteration in many anticancer drugs has been carried out to search for better drugs for cancer. In this review, the majority of anticancer drugs and molecules for which deuteration was applied to get better anticancer molecules were discussed. This review will provide a complete guide about the benefits of deuteration in cancer chemotherapy.


Assuntos
Antineoplásicos , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Mesilato de Imatinib/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Descoberta de Drogas
2.
J Biomol Struct Dyn ; 40(6): 2498-2515, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33111617

RESUMO

To confront a disease like Alzheimer's disease having complex pathogenesis, development of multitarget-directed ligands has emerged as a promising drug discovery approach. In our endeavor towards the development of multitarget-directed ligands for Alzheimer's disease, a series of indoloquinoxaline derivatives were designed and synthesized. In vitro cholinesterase inhibition studies revealed that all the synthesized compounds exhibited moderate to good cholinesterase inhibitory activity. 6-(6-(Piperidin-1-yl)hexyl)-6H-indolo[2,3-b]quinoxaline 9f was identified as the most potent and selective BuChE inhibitor (IC50 = 0.96 µM, selectivity index = 0.17) that possessed 2 fold higher BuChE inhibitory activity compared to the commercially approved reference drug donepezil (IC50 = 1.87 µM). Moreover, compound 9f is also endowed with self-induced Aß1-42 aggregation inhibitory activity (51.24% inhibition at 50 µM concentration). Some of the compounds of the series also displayed moderate anti-oxidant activity. To perceive a putative binding mode of the compound 9f, molecular docking studies were carried out, and the results pointed out significant interactions of compound 9f with the enzymes in the binding sites of cholinesterases as well as Aß1-42. Additionally, compound 9f exhibited favorable in silico ADMET properties. Put together these findings project compound 9f as a potential multitarget-directed ligand in the direction of developing novel anti-AD drugs.Communicated by Ramaswamy H. Sarma.


Assuntos
Doença de Alzheimer , Inibidores da Colinesterase , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides , Inibidores da Colinesterase/química , Colinesterases/metabolismo , Desenho de Fármacos , Humanos , Ligantes , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
3.
J Biomol Struct Dyn ; 40(20): 10278-10299, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34215173

RESUMO

With the aim to combat a multi-faceted neurodegenerative Alzheimer's disease (AD), a series of carbazole-based semicarbazide and hydrazide derivatives were designed, synthesized and assessed for their cholinesterase (ChE) inhibitory, antioxidant and biometal chelating activity. Among them, (E)-2-((9-ethyl-9H-carbazol-3-yl)methylene)-N-(pyridin-2-yl)hydrazinecarbothioamide (62) and (E)-2-((9-ethyl-9H-carbazol-3-yl)methylene)-N-(5-chloropyridin-2-yl)hydrazinecarbothioamide (63) emerged as the premier candidates with good ChE inhibitory activities (IC50 values of 1.37 µM and 1.18 µM for hAChE, IC50 values of 2.69 µM and 3.31 µM for EqBuChE, respectively). All the test compounds displayed excellent antioxidant activity (reduction percentage of DPPH values for compounds (62) and (63) were 85.67% and 84.49%, respectively at 100 µM concentration). Compounds (62) and (63) conferred specific copper ion chelating property in metal chelation study. Molecular docking studies of compounds (62) and (63) indicate strong interactions within the active sites of both the ChE enzymes. Besides that, these compounds also exhibited significant in silico drug-like pharmacokinetic properties. Thus, taken together, they can serve as a starting point in the designing of multifunctional ligands in pursuit of potential anti-AD agents that might further prevent the progression of ADs.Communicated by Ramaswamy H. Sarma.


Assuntos
Doença de Alzheimer , Semicarbazonas , Humanos , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Acetilcolinesterase/química , Semicarbazonas/farmacologia , Hidrazonas , Simulação de Acoplamento Molecular , Carbazóis/farmacologia , Carbazóis/química , Quelantes/farmacologia , Quelantes/química , Antioxidantes/farmacologia , Antioxidantes/química , Doença de Alzheimer/tratamento farmacológico , Relação Estrutura-Atividade
4.
ACS Chem Neurosci ; 11(21): 3557-3574, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33073564

RESUMO

The inadequate clinical efficacy of the present anti-Alzheimer's disease (AD) drugs and their low impact on the progression of Alzheimer's disease in patients have revised the research focus from single targets to multitarget-directed ligands. A novel series of substituted triazinoindole derivatives were obtained by introducing various substituents on the indole ring for the development of multitarget-directed ligands as anti-AD agents. The experimental data indicated that some of these compounds exhibited significant anti-AD properties. Among them, 8-(piperidin-1-yl)-N-(6-(pyrrolidin-1-yl)hexyl)-5H-[1,2,4]triazino[5,6-b]indol-3-amine (60), the most potent cholinesterase inhibitor (AChE, IC50 value of 0.32 µM; BuChE, IC50 value of 0.21 µM), was also found to possess significant self-mediated Aß1-42 aggregation inhibitory activity (54% at 25 µM concentration). Additionally, compound 60 showed strong antioxidant activity. In the PAMPA assay, compound 60 exhibited blood-brain barrier penetrating ability. An acute toxicity study in rats demonstrated no sign of toxicity at doses up to 2000 mg/kg. Furthermore, compound 60 significantly restored the cognitive deficits in the scopolamine-induced mice model and Aß1-42-induced rat model. In the in silico ADMET prediction studies, the compound satisfied all the parameters of CNS acting drugs. These results highlighted the potential of compound 60 to be a promising multitarget-directed ligand for the development of potential anti-AD drugs.


Assuntos
Doença de Alzheimer , Preparações Farmacêuticas , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Inibidores da Colinesterase/farmacologia , Desenho de Fármacos , Humanos , Ligantes , Camundongos , Ratos , Relação Estrutura-Atividade
5.
Bioorg Chem ; 101: 103977, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32485470

RESUMO

Molecules capable of engaging with multiple targets associated with pathological condition of Alzheimer's disease have proved to be potential anti-Alzheimer's agents. In our goal to develop multitarget-directed ligands for the treatment of Alzheimer's disease, a novel series of carbazole-based stilbene derivatives were designed by the fusion of carbazole ring with stilbene scaffold. The designed compounds were synthesized and evaluated for their anti-AD activities including cholinesterase inhibition, Aß aggregation inhibition, antioxidant and metal chelation properties. Amongst them, (E)-1-(4-(2-(9-ethyl-9H-carbazol-3-yl)vinyl)phenyl)-3-(2-(pyrrolidin-1-yl)ethyl)thiourea (50) appeared to be the best candidate with good inhibitory activities against AChE (IC50 value of 2.64 µM) and BuChE (IC50 value of 1.29 µM), and significant inhibition of self-mediated Aß1-42 aggregation (51.29% at 25 µM concentration). The metal chelation study showed that compound (50) possessed specific copper ion chelating property. Additionally, compound (50) exhibited moderate antioxidant activity. To understand the binding mode of 50, molecular docking studies were performed, and the results indicated strong non-covalent interactions of 50 with the enzymes in the active sites of AChE, BuChE as well as of the Aß1-42 peptide. Additionally, it showed promising in silico ADMET properties. Putting together, these findings evidently showed compound (50) as a potential multitarget-directed ligand in the course of developing novel anti-AD drugs.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Estilbenos/uso terapêutico , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
6.
ACS Chem Neurosci ; 10(8): 3635-3661, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31310717

RESUMO

The multifaceted nature of Alzheimer's disease (AD) demands treatment with multitarget-directed ligands (MTDLs) to confront the key pathological aberrations. A novel series of triazinoindole derivatives were designed and synthesized. In vitro studies revealed that all the compounds showed moderate to good anticholinesterase activity; the most active compound 23e showed an IC50 value of 0.56 ± 0.02 µM for AChE and an IC50 value of 1.17 ± 0.09 µM for BuChE. These derivatives are also endowed with potent antioxidant activity. To understand the plausible binding mode of the compound 23e, molecular docking studies and molecular dynamics simulation studies were performed, and the results indicated significant interactions of 23e within the active sites of AChE as well as BuChE. Compound 23e successfully diminished H2O2-induced oxidative stress in SH-SY5Y cells and displayed excellent neuroprotective activity against H2O2 as well as Aß-induced toxicity in SH-SY5Y cells in a concentration dependent manner. Furthermore, it did not show any significant toxicity in neuronal SH-SY5Y cells in the cytotoxicity assay. Compound 23e did not show any acute toxicity in rats at doses up to 2000 mg/kg, and it significantly reversed scopolamine-induced memory deficit in mice model. Additionally, compound 23e showed notable in silico ADMET properties. Taken collectively, these findings project compound 23e as a potential balanced MTDL in the evolution process of novel anti-AD drugs.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/farmacologia , Aprendizagem em Labirinto/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Doença de Alzheimer/metabolismo , Animais , Linhagem Celular Tumoral , Inibidores da Colinesterase/uso terapêutico , Humanos , Peróxido de Hidrogênio/farmacologia , Masculino , Camundongos , Simulação de Acoplamento Molecular , Neurônios/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/fisiologia , Relação Estrutura-Atividade
7.
Mol Neurobiol ; 54(9): 6697-6722, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-27744571

RESUMO

Excitotoxicty, a key pathogenic event is characteristic of the onset and development of neurodegeneration. The glutamatergic neurotransmission mediated through different glutamate receptor subtypes plays a pivotal role in the onset of excitotoxicity. The role of NMDA receptor (NMDAR), a glutamate receptor subtype, has been well established in the excitotoxicity pathogenesis. NMDAR overactivation triggers excessive calcium influx resulting in excitotoxic neuronal cell death. In the present study, a series of benzazepine derivatives, with the core structure of 3-methyltetrahydro-3H-benzazepin-2-one, were synthesised in our laboratory and their NMDAR antagonist activity was determined against NMDA-induced excitotoxicity using SH-SY5Y cells. In order to assess the multi-target-directed potential of the synthesised compounds, Aß1-42 aggregation inhibitory activity of the most potent benzazepines was evaluated using thioflavin T (ThT) and Congo red (CR) binding assays as Aß also imparts toxicity, at least in part, through NMDAR overactivation. Furthermore, neuroprotective, free radical scavenging, anti-oxidant and anti-apoptotic activities of the two potential test compounds (7 and 14) were evaluated using primary rat hippocampal neuronal culture against Aß1-42-induced toxicity. Finally, in vivo neuroprotective potential of 7 and 14 was assessed using intracerebroventricular (ICV) rat model of Aß1-42-induced toxicity. All of the synthesised benzazepines have shown significant neuroprotection against NMDA-induced excitotoxicity. The most potent compound (14) showed relatively higher affinity for the glycine binding site as compared with the glutamate binding site of NMDAR in the molecular docking studies. 7 and 14 have been shown experimentally to abrogate Aß1-42 aggregation efficiently. Additionally, 7 and 14 showed significant neuroprotective, free radical scavenging, anti-oxidant and anti-apoptotic properties in different in vitro and in vivo experimental models. Finally, 7 and 14 attenuated Aß1-42-induced tau phosphorylation by abrogating activation of tau kinases, i.e. MAPK and GSK-3ß. Thus, the results revealed multi-target-directed potential of some of the synthesised novel benzazepines against excitotoxicity.


Assuntos
Benzazepinas/administração & dosagem , Benzazepinas/síntese química , Sistemas de Liberação de Medicamentos/métodos , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Antagonistas de Aminoácidos Excitatórios/síntese química , Animais , Benzazepinas/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos/métodos , Antagonistas de Aminoácidos Excitatórios/metabolismo , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Ratos , Receptores de Glutamato/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo
8.
Mol Divers ; 19(4): 653-67, 2015 11.
Artigo em Inglês | MEDLINE | ID: mdl-25916735

RESUMO

The benzazepine ring system has offered interesting CNS-active medicinal agents. Taking this privileged structure as the basic scaffold, [Formula: see text] and/or [Formula: see text]-alkylated benzazepin-2-one derivatives and their reduced analogs have been prepared as potential [Formula: see text] receptor agonists. The selective alkylation at the [Formula: see text] and/or [Formula: see text] positions of this seven-membered lactam ring is here reported for the first time under different reaction conditions. The synthesized compounds were evaluated for their biological profile as potential [Formula: see text] agonists using a classic pharmacological approach. Three derivatives (15, 17, and 20) have shown promising [Formula: see text] agonistic activity which can be further optimized as anti-obesity agents for the treatment of male sexual dysfunction. Further, a homology model for [Formula: see text] receptor was generated using MODELLER, and ligand-receptor interactions for these potential molecules were studied.


Assuntos
Benzazepinas/síntese química , Pênis/efeitos dos fármacos , Antagonistas da Serotonina/síntese química , Animais , Benzazepinas/química , Benzazepinas/farmacologia , Masculino , Modelos Moleculares , Estrutura Molecular , Ereção Peniana , Ratos , Ratos Sprague-Dawley , Antagonistas da Serotonina/química , Homologia Estrutural de Proteína
9.
Comb Chem High Throughput Screen ; 16(5): 345-93, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23330874

RESUMO

The existence of preferred molecular scaffolds that possess inherent biological activity, called privileged structures, is now well recognized. Such privileged structures not only provide enhanced drug-like properties but also give new hits for developing leads. The synthesis of combinatorial libraries, especially with the insertion of privileged substructures into heterocyclic moieties containing nitrogen, provides for a greater probability of the discovery of novel lead compounds using chemical transformation. The review focuses on the progress in the solid-phase synthetic strategies of nitrogen containing privileged structures over the years.


Assuntos
Técnicas de Química Combinatória , Compostos Heterocíclicos/síntese química , Nitrogênio/química , Técnicas de Síntese em Fase Sólida , Benzodiazepinas/síntese química , Benzodiazepinas/química , Compostos Heterocíclicos/química , Estrutura Molecular , Purinas/síntese química , Purinas/química , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...