Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Plant Sci ; 12(3): e11600, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38912128

RESUMO

Premise: Global anthropogenic change threatens the health and productivity of forest ecosystems. Assisted migration and reforestation are tools to help mitigate these impacts. However, questions remain about how to approach sourcing seeds to ensure high establishment and future adaptability. Methods: Using exome-capture sequencing, we demonstrate a computational approach to finding the best n-sets from a candidate list of seed sources that collectively achieve high genetic diversity (GD) and minimal genetic load (GL), while also increasing evolvability in quantitative traits. The benefits of this three-part strategy (diversity-load-evolvability) are to increase near-term establishment success while also boosting evolutionary potential to respond to future stressors. Members of The Nature Conservancy and the Central Appalachian Spruce Restoration Initiative planted 58,000 seedlings across 255 acres. A subset of seedlings was monitored for establishment success and variation in growth. Results: The results show gains in GD relative to GL and increases in quantitative genetic variation in seedling growth for pooled vs. single-source restoration. No single "super source" was observed across planting sites; rather, monitoring results demonstrate that pooling of multiple sources helps achieve higher GD:GL and evolvability. Discussion: Our study shows the potential for integrating genomics into local-scale restoration and the importance of building partnerships between academic researchers and applied conservation managers.

2.
Philos Trans R Soc Lond B Biol Sci ; 377(1848): 20210008, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35184589

RESUMO

Shifting range limits are predicted for many species as the climate warms. However, the rapid pace of climate change will challenge the natural dispersal capacity of long-lived, sessile organisms such as forest trees. Adaptive responses of populations will, therefore, depend on levels of genetic variation and plasticity for climate-responsive traits, which likely vary across the range due to expansion history and current patterns of selection. Here, we study levels of genetic and plastic variation for phenology and growth traits in populations of red spruce (Picea rubens), from the range core to the highly fragmented trailing edge. We measured more than 5000 offspring sampled from three genetically distinct regions (core, margin and edge) grown in three common gardens replicated along a latitudinal gradient. Genetic variation in phenology and growth showed low to moderate heritability and differentiation among regions, suggesting some potential to respond to selection. Phenology traits were highly plastic, but this plasticity was generally neutral or maladaptive in the effect on growth, revealing a potential liability under warmer climates. These results suggest future climate adaptation will depend on the regional availability of genetic variation in red spruce and provide a resource for the design and management of assisted gene flow. This article is part of the theme issue 'Species' ranges in the face of changing environments (Part II)'.


Assuntos
Picea , Aclimatação , Mudança Climática , Genótipo , Fenótipo , Picea/genética , Plásticos
3.
Ann Bot ; 128(1): 83-95, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-33772589

RESUMO

BACKGROUND AND AIMS: Grasses in subfamily Pooideae live in some of the world's harshest terrestrial environments, from frigid boreal zones to the arid windswept steppe. It is hypothesized that the climate distribution of species within this group is driven by differences in climatic tolerance, and that tolerance can be partially explained by variation in stomatal traits. METHODS: We determined the aridity index (AI) and minimum temperature of the coldest month (MTCM) for 22 diverse Pooideae accessions and one outgroup, and used comparative methods to assess predicted relationships for climate traits versus fitness traits, stomatal diffusive conductance to water (gw) and speed of stomatal closure following drought and/or cold. KEY RESULTS: Results demonstrate that AI and MTCM predict variation in survival/regreening following drought/cold, and gw under drought/cold is positively correlated with δ 13C-measured water use efficiency (WUE). However, the relationship between climate traits and fitness under drought/cold was not explained by gw or speed of stomatal closure. CONCLUSIONS: These findings suggest that Pooideae distributions are at least partly determined by tolerance to aridity and above-freezing cold, but that variation in tolerance is not uniformly explained by variation in stomatal traits.


Assuntos
Secas , Poaceae , Temperatura Baixa , Estômatos de Plantas , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...