Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; : 133447, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944073

RESUMO

Electrospun nanofibers exhibit a significant potential in the synthesis of nanostructured materials, thereby offering a promising avenue for enhancing the efficacy of wound care. The present study aimed to investigate the wound-healing potential of two biomacromolecules, PCL-Gelatin nanofiber adhered with bone marrow-derived mesenchymal stem cells (BMSCs). Characterisation of the nanofiber revealed a mean fiber diameter ranging from 200 to 300 nm, with distinctive elemental peaks corresponding to polycaprolactone (PCL) and gelatin. Additionally, BMSCs derived from bone marrow were integrated into nanofibers, and their wound-regenerative potential was systematically evaluated through both in-vitro and in-vivo methodologies. In-vitro assessments substantiated that BMSC-incorporated nanofibers enhanced cell viability and crucial cellular processes such as adhesion, and proliferation. Subsequently, in-vivo studies were performed to demonstrate the wound-healing efficacy of nanofibers. It was observed that the rate of wound healing of BMSCs incorporated nanofibers surpassed both, nanofiber and BMSCs alone. Furthermore, histomorphological analysis revealed accelerated re-epithelization and improved wound contraction in BMSCs incorporated nanofiber group. The fabricated nanofiber incorporated with BMSCs exhibited superior wound regeneration in animal model and may be utilised as a wound healing patch.

2.
Food Chem ; 439: 138120, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38064831

RESUMO

Lateral flow assays (LFAs) are among the utmost cost-efficient, paper-based point-of-care (POC) diagnostic devices. Herein, we have reported the fabrication of a competitive LFA for on-site detection of penicillin. Various parameters such as Ab concentration for conjugation, Pen-BSA conjugate concentration, pore size of membrane, and blocking buffer were standardised for the fabrication of LFA. Different concentrations of penicillin (1 pM-1 mM) were added to the sample pad to observe the color intensity. The visual detection limit (LOD) achieved from the LFA was 10 nM for Penicillin that correlated with the LOD calculated from the 'ColorGrab' colorimeter application. Additionally, LFA showed insignificant cross reactivity with other ß-lactam antibiotics and were also validated with spiked food samples such as milk, meat and egg. Hence, the fabricated LFA can be successfully utilised for the POC detection of penicillin in food samples on large scale.


Assuntos
Ouro , Nanopartículas Metálicas , Limite de Detecção , Penicilinas , Sistemas Automatizados de Assistência Junto ao Leito
3.
Colloids Surf B Biointerfaces ; 226: 113319, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37120932

RESUMO

Salmonella strain is a prevalent pathogen, affecting poultry industry and hence human population around the world. Host-specific pathogen infections including fowl typhoid, pullorum disease and typhoid fever affects poultry birds, causing huge economic loss worldwide. This study explored the fabrication of immunochromatographic (ICG) strip by colorimetric method integrated with smartphone ColorGrab application for the detection of Salmonella using in-house generated antibodies (Abs) conjugated with gold nanoparticles. The developed point-of-care diagnostic platform was fabricated in-house and tested to detect the presence of Salmonella in a linear range of 107-100 CFU/mL with the limit of detection (LOD) of 103, 102 and 104 CFU/mL respectively, for Salmonella gallinarum (S.gal), Salmonella pullorum (S.pul) and Salmonella enteritidis (S.ent), which was further confirmed by smartphone-based ColorGrab application. The fabricated ICG strips were further validated using spiked fecal, meat, and milk samples which provided results in 10 mins with stability at 4 °C and 37 °C up to 28 days. Hence, the fabricated in-house ICG strip can be used as a portable, cost-effective diagnostic device for rapid detection of Salmonella strains in food samples.


Assuntos
Nanopartículas Metálicas , Doenças das Aves Domésticas , Salmonelose Animal , Animais , Humanos , Ouro , Sistemas Automatizados de Assistência Junto ao Leito , Smartphone , Salmonelose Animal/diagnóstico , Doenças das Aves Domésticas/diagnóstico , Salmonella , Imunoensaio , Galinhas
4.
Diagnostics (Basel) ; 13(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36900059

RESUMO

Personalized point-of-care testing (POCT) devices, such as wearable sensors, enable quick access to health monitoring without the use of complex instruments. Wearable sensors are gaining popularity owing to their ability to offer regular and continuous monitoring of physiological data by dynamic, non-invasive assessments of biomarkers in biofluids such as tear, sweat, interstitial fluid and saliva. Current advancements have concentrated on the development of optical and electrochemical wearable sensors as well as advances in non-invasive measurements of biomarkers such as metabolites, hormones and microbes. For enhanced wearability and ease of operation, microfluidic sampling, multiple sensing, and portable systems have been incorporated with materials that are flexible. Although wearable sensors show promise and improved dependability, they still require more knowledge about interaction between the target sample concentrations in blood and non-invasive biofluids. In this review, we have described the importance of wearable sensors for POCT, their design and types of these devices. Following which, we emphasize on the current breakthroughs in the application of wearable sensors in the realm of wearable integrated POCT devices. Lastly, we discuss the present obstacles and forthcoming potentials including the use of Internet of Things (IoT) for offering self-healthcare using wearable POCT.

5.
Diagnostics (Basel) ; 13(4)2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36832187

RESUMO

Two-dimensional (2D) nanomaterials with chemical and structural diversity have piqued the interest of the scientific community due to their superior photonic, mechanical, electrical, magnetic, and catalytic capabilities that distinguish them from their bulk counterparts. Among these 2D materials, two-dimensional (2D) transition metal carbides, carbonitrides, and nitrides with a general chemical formula of Mn+1XnTx (where n = 1-3), together known as MXenes, have gained tremendous popularity and demonstrated competitive performance in biosensing applications. In this review, we focus on the cutting-edge advances in MXene-related biomaterials, with a systematic summary on their design, synthesis, surface engineering approaches, unique properties, and biological properties. We particularly emphasize the property-activity-effect relationship of MXenes at the nano-bio interface. We also discuss the recent trends in the application of MXenes in accelerating the performance of conventional point of care (POC) devices towards more practical approaches as the next generation of POC tools. Finally, we explore in depth the existing problems, challenges, and potential for future improvement of MXene-based materials for POC testing, with the goal of facilitating their early realization of biological applications.

6.
Biotechnol Genet Eng Rev ; : 1-29, 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36641600

RESUMO

One of the greatest challenges faced during surgical procedures is closing and healing of wounds, which are essential in the field of orthopaedics, trauma, intensive care and general surgery. One of the main causes of death has been linked to chronic wounds, especially in immunosuppressant or diabetic patients. Due to increasing chronic wound fatality along with different pathologies associated with them, the current therapeutic methods are insufficient which has established an eminent need for innovative techniques. Traditionally, wound healing was carried out using formulations and ointments containing silver combined with different biomaterial, but was found to be toxic. Hence, the advent of alternative nanomaterial-based therapeutics for effective wound healing have come into existence. In this review, we have discussed an overview of wound infections such as different wound types, the wound healing process, dressing of wounds and conventional therapies. Furthermore, we have explored various nanotechnological advances made in wound healing therapy which include the use of promising candidates such as organic, inorganic, hybrid nanoparticles/nanocomposites and synthetic/natural polymer-based nanofibers. This review further highlights nanomaterial-based applications for regeneration of tissue in wound healing and can provide a base for researchers worldwide to contribute to this advancing medical area of wound therapy.

7.
J Med Virol ; 95(1): e28416, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36541714

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has emphasized the need for development of a rapid diagnostic device for the effective treatment and its mitigation. Lateral flow immunoassay (LFIA) belongs to a class of diagnostic devices, which has the benefit of providing quick results, easy to handle, low cost, and on-site applicable. So far, several LFIA has been developed for the detection of infectious severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), however, only a few of them are antigen (Ag)-based. Here, we describe an antibody (Ab)-labeled gold nanoparticles (AuNPs)-based LFIA (AuNPs-LFIA) for the detection of Receptor-Binding Domain (RBD) of SARS-CoV-2. For this, RBD Ab of SARS-CoV-2 was conjugated with the AuNPs, which served as a detecting probe. The fabricated LFIA strip was optimized for different parameters such as membrane pore size, blocking conditions, Ab coating concentration, and conjugate incubation. The optimized LFIA strips were validated in spiked buffer samples and the optimal limit of detection was found to be 1 ng/ml, which was confirmed by a smartphone-based application. Moreover, the developed AuNPs-LFIA strips effectively detected RBD Ag in 100 clinical samples with 94.3% sensitivity and 90.9% specificity in clinical samples when compared with the gold standard (RT-PCR). The fabricated LFIAs are reported to have storage stability of up to 21 days at 4°C and room temperature (RT). Hence, the developed LFIA can be used as a portable, cost-effective diagnostic device for rapid detection of SARS-CoV-2.


Assuntos
COVID-19 , Nanopartículas Metálicas , Humanos , SARS-CoV-2 , Ouro , COVID-19/diagnóstico , Smartphone , Nanopartículas Metálicas/química , Imunoensaio/métodos
8.
Nanoscale Adv ; 4(18): 3966-3977, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36133331

RESUMO

Lateral flow assays (LFAs) are one of the most economical, point-of-care (PoC) diagnostic assays that exploit the colorimetric properties of gold nanoparticles (AuNPs). Up to the best of our knowledge, no rapid antigen-based LFA exists for Japanese Encephalitis Virus (JEV) detection. Herein, we have reported a novel portable sandwich-type LFA for on-site detection of the non-structural 1 (NS1) secretory protein of JEV. In-house JEV NS1 antibodies (Abs) were generated and labelled with AuNPs as immunoprobes. A glass fibre membrane conjugate pad was soaked with AuNPs-Ab solution, while the JEV NS1 Ab and anti-rabbit IgG 2° Ab were coated as the test and control lines, respectively, on a nitrocellulose (NC) membrane. Different layers of the LFA were fabricated and various parameters were standardised for optimum colour intensity development. JEV negative serum samples spiked with JEV NS1 Ags (linear range - 1 pg ml-1 to 1 µg ml-1) were applied onto the sample pad and the intensity of the red colour developed on the test line increased with increasing concentration of Ag. The visual limit of detection (LOD) determined from the LFA was 10 pg ml-1, which corresponded to the LOD determined by the graphical data obtained from ImageJ software and the Colorimeter smartphone application. Furthermore, the colorimetric based immunosensor showed minimal non-specific detection of other closely related flaviviral NS1 Ags in the spiked serum, provided a rapid result within 10 min, showed storage stability up to a month at 4 °C, successfully detected the JEV NS1 protein in clinically infected pig serum samples, and hence, may be developed into a PoC screening diagnostic kit for JEV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...