Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(26): 6841-6851, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38917061

RESUMO

Photocatalytic water splitting to spontaneously produce H2 and O2 is a long-standing goal in solar energy conversion, presenting a significant challenge without using sacrificial electron donors or external biases. Inspired by natural photosynthesis, the design of artificial Z-scheme photocatalytic systems is at the forefront of this field. These systems achieve higher redox potential by separating photogenerated electrons and holes through a fast interlayer recombination process between valence and conduction band edges. Z-scheme photocatalysis involves using two different semiconductors with distinct bandgap energies. Here, we explore potential systems based on two-dimensional (2D) heterostructures composed of carbon, nitrogen, or similar main group elements. The advantages and disadvantages of these systems are discussed, with a focus on enhancing their efficiency through strategic design. Special emphasis is placed on the dynamics of excited charge carrier transfer and recombination processes, which are crucial for developing efficient photocatalytic systems for overall water splitting.

2.
J Phys Chem A ; 128(16): 3062-3077, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38608179

RESUMO

A molecule, namely 2-(1H-benzo[d]imidazol-2-yl)-6-(benzo[d]thiazol-2-yl)-4-bromophenol (BIBTB), having a two-way proton transfer unit of thiazole and imidazole moieties was synthesized and characterized by NMR, electrospray ionization mass spectrometry (ESI-MS), and single-crystal diffraction studies. Steady state and time-resolved spectral studies of BIBTB support excited state intramolecular proton transfer (ESIPT), causing imine-amine tautomerization through a two-way 6-membered H-bonded ring, where the N atoms of benzothiazole and the benzoimidazole unit are involved as proton acceptor sites. Interestingly, in a nonpolar and moderately polar solvent, photoisomerization in BIBTB is found to be favored toward the thiazole ring, whereas in a highly polar solvent, it is favored toward the imidazole ring. A spectral comparison of BIBTB with judicially designed molecules 2-(benzo[d]thiazol-2-yl)-4-bromophenol (HBT) and 2-(1H-benzo[d]imidazol-2-yl)-4-bromophenol (BIB) supports these inferences. Theoretical calculation using the Density Functional Theory (DFT) at CAM-B3LYP/6-311+G(d,p) level supports the existence of two low-energy 6-membered hydrogen-bonded planar conformers in the ground state in the gas phase and in solvents of different dielectrics. The potential energy curves (PECs) calculated along the proton transfer (PT) coordinate are found to have a high energy barrier in the ground state and to be barrierless or have a low energy barrier in the excited state for both the forms. The calculated vertical excitation and the emission energy from the relaxed excited and PT states show good correlation with the experimental spectral data. Aggregation of BIBTB in water with red shifted emission was established from X-ray single-crystal structure analysis, solid state emission, and Dynamic Light Scattering (DLS) measurement. The molecule BIBTB also acts as a fluorescence probe for sensing the explosive picric acid in the subnano scale and can be used to determine the proportion of water in dimethyl sulfoxide (DMSO) solvent.

3.
J Mater Chem B ; 12(2): 489-499, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38099442

RESUMO

The dysfunctions in the mitochondria are associated with various pathological conditions like neurodegeneration, metabolic disorder, and cancer, leading to dysregulated cell death. Here, we have designed and synthesized a julolidine-based molecular rotor (JMT) to target mitochondria with far-red emission accounting for mitochondrial dysfunction. JMT showed viscosity sensitivity with 160-fold enhancement in fluorescence intensity. The origin of the dark state in a lower viscous environment was investigated through density functional calculations. We have employed JMT to monitor mitochondrial dysfunction induced by nystatin using confocal and fluorescence lifetime imaging microscopy. Further, we investigated mitochondrial abnormalities under inflammatory conditions triggered by lipopolysaccharide in live HeLa cells. The cellular uptake mechanisms of JMT were studied using various endocytosis inhibitors. Moreover, we reported tracking small fluorescent molecule switching from mitochondria to the plasma membrane upon introducing mitochondrial depolarizer in cells. On treating the mitochondria potential uncoupler, JMT relocates to the cell membrane and can be utilized for understanding the interplay between mitochondria and cell membranes. Moreover, JMT was applied to stain the RBC plasma membrane isolated from human blood.


Assuntos
Corantes Fluorescentes , Doenças Mitocondriais , Humanos , Células HeLa , Viscosidade , Corantes Fluorescentes/metabolismo , Mitocôndrias/metabolismo , Membrana Celular/metabolismo , Doenças Mitocondriais/metabolismo
4.
J Fluoresc ; 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38117434

RESUMO

1,4-dihydropyridines (DHPs) are biologically active. 1,4-DHP analogs with appropriate substituents also show characteristic fluorescence activity. Here, for the first time, we report a simple and easy synthesis of a novel fluorescent 1,4- DHP derivative of dibenzo[18]-crown-6 (2), which showed promising sensing ability towards physiologically important metal ions. The covalent linking of 1,4-DHP analog with dibenzo[18]-crown-6 instigates its fluorescence activity in (2) and makes it biologically relevant. (2) shows a noteworthy enhancement of fluorescence intensity toward Fe3+ and Ba2+ in methanol medium. DFT studies revealed that metal binding by the crown ether-O atoms leads to structural rigidity, enhancing the fluorescence intensity. Interestingly, (2) shows utility in the quantitative detection of Fe3+ ions in the biological (human blood serum) and food samples.

5.
Phys Chem Chem Phys ; 25(36): 25018-25028, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37698058

RESUMO

By employing first principles calculations, we have studied the electronic structures of pristine (α1) and different defective (α1-t1, α1-t2) borophene sheets to understand the efficacy of such systems as metal-free electrocatalysts for the CO2 reduction reaction. Among the three studied systems, only α1-t1, the defective borophene sheet created by removal of a 5-coordinated boron atom, can chemisorb and activate a CO2 molecule for its subsequent reduction processes, leading to different C1 chemicals, followed by selective conversion into C2 products by multiple proton coupled electron transfer steps. The computed onset potentials for the C1 chemicals such as CH3OH and CH4 are low enough. On the other hand, in the case of the C2 reduction process, the C-C coupling barrier is only 0.80 eV in the solvent phase which produces CH3CHO and CH3CH2OH with very low onset potential values of -0.21 and -0.24 V, respectively, suppressing the competing hydrogen evolution reaction.

6.
Analyst ; 148(11): 2425-2437, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37194365

RESUMO

Extracellular metallic debris is deposited into the well-known 'recycle bins' of the cells named lysosomes. The accumulation of unwanted metal ions can cause dysfunction of hydrolyzing enzymes and membrane rupturing. Thus, herein, we synthesized rhodamine-acetophenone/benzaldehyde derivatives for the detection of trivalent metal ions in aqueous media. In solution, the synthesized probes exhibited a 'turn-on' colorimetric and fluorometric response upon complexation with trivalent metal ions (M3+). Mechanistically, M3+ chelation enables the appearance of a new emission band at approximately 550 nm, which verifies the disruption of the closed ring and the restoration of conjugation on the xanthene core in rhodamine 6G derivatives. Exclusive localization of the biocompatible probes at the lysosomal compartment favored the quantification of deposited Al3+. Moreover, the novelty of the work lies in the detection of Al3+ deposited in the lysosome that originated from hepatitis B vaccines, which shows their efficiency for near future in vivo applications.


Assuntos
Corantes Fluorescentes , Vacinas , Corantes Fluorescentes/toxicidade , Rodaminas , Íons , Metais , Lisossomos
7.
ACS Appl Mater Interfaces ; 14(50): 55957-55970, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36479867

RESUMO

Light, as an external stimulus, has begun to engage a phenomenal role in the diverse field of science. Encouraged by recent progress from biology to materials chemistry, various light-responsive fluorescent probes have been developed. Herein, we present a 1,8-naphthalimide-based probe NIT-NO2 capable of releasing nitric oxide (NO) along with the formation of fluorescent organic nanoparticles (FONs) upon exposure to near-visible UV light. By synthesizing the photoproduct NIT-OH, we unveiled that initially NIT-NO2 released NO and converted to NIT-OH, while prolonged irradiation led to the formation of FONs that is corroborated by the red-edge excitation shift as well as microscopic investigation. Finally, we have successfully applied NIT-NO2 and NIT-OH for specific labeling of lipid droplets and plasma membranes, respectively, and demonstrated the switching from lipid droplets to plasma membranes by using light as a stimulus. These two probes show unique imaging applications inside the cells depending on the polarity and hydrophobicity of the environment. This work paves a fascinating way for the generation of excitation-dependent FONs from a small organic fluorophore and highlights its potency as an exclusive imaging tool.


Assuntos
Corantes Fluorescentes , Nanopartículas , Óxido Nítrico , Dióxido de Nitrogênio , Gotículas Lipídicas
8.
J Phys Chem A ; 126(2): 318-324, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34985265

RESUMO

For π-conjugated systems, polaron formation has a major impact on their optoelectronic properties. In fact, for such systems, an exquisite interplay between electron delocalization and the steric effect determines their ground state properties. However, an excess charge (positive or negative) injection causes structural reorientation because of extended conjugation. Herein, we investigate the effect of such an excess charge in an individual polyphenylene on its quantum conductance behavior. By combining the DFT and NEGF formalisms, we characterize both structural and electronic changes occurring upon electron and hole injection. We demonstrate that for both the cationic and anionic radicals, the excess charge is observed to be localized, inducing a partial planarization of the molecule and forming cationic and anionic polarons, respectively. The calculated low-bias conductance values determine the polaronic effect and could be implemented for easy determination and measurement of polaron formation. In fact, cationic and anionic polarons induce a large degree of conductance switching, involving a decrease and increase of conductance, respectively.

9.
J Phys Chem Lett ; 12(44): 10837-10844, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34726413

RESUMO

Searching for an alternative nonhazardous catalyst for direct urea synthesis that avoids the traditional route of NH3 synthesis followed by CO2 addition is a challenging field of research nowadays. Based on first-principles calculations, we herein propose a novel electrocatalyst comprising of totally nonmetal earth abundant elements (dual-Si doped g-C6N6 sheet) which is capable of activating N2 and making it susceptible toward direct insertion of CO into the N-N bond, producing *NCON* which is the precursor for urea production by direct coupling of N2 and CO2 followed by multiple proton coupled electron transfer processes. Remarkably, the calculated onset potential for urea production is much less than that of NH3 synthesis and hydrogen evolution reactions, and also the faradaic efficiency is nearly 100% for production urea over ammonia, which promotes exclusive electrocatalytic urea synthesis by suppressing the NH3 synthesis as well as hydrogen evolution reactions.

10.
J Phys Chem B ; 125(37): 10481-10493, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34498871

RESUMO

Amyloid aggregation is a pathological trait observed in many incurable and fatal neurodegenerative and metabolic diseases associated with misfolding and self-assembly of various proteins. Noncovalent interactions between these structural motifs and small molecules can, however, prevent this aggregation. Herein, five structurally different synthetic (Cz1-Cz4) and naturally occurring (Cz5, mahanimbine) fluorescent carbazole analogs are explored for their comparative amyloid aggregation inhibitory activities. Cz3 inhibited the amyloid deposition on the pancreatic ß-cells of diabetic mice. Moreover, Cz3 and Cz5 also showed efficacy as the fluorescent cell (MIN6) imaging agents. Further structural modifications of these carbazoles may lead to development of low-cost and non-toxic therapeutic agents for Type 2 diabetes and other amyloidosis-related diseases.


Assuntos
Amiloidose , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Amiloide , Amiloidose/tratamento farmacológico , Animais , Carbazóis/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Camundongos
11.
J Phys Chem Lett ; 12(11): 2788-2795, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33710885

RESUMO

Designing metal-free photocatalysts for oxygen reduction reaction (ORR) is an important step toward the development of sustainable and alternative energy resources because ORR plays a key role in fuel cell reactions. An efficient photocatalyst for ORR must possess suitable band positions with respect to electrochemical potentials of ORR, minimize energy losses due to charge transport and electron-hole recombination, and have kinetically suitable electron transfer properties. Using first-principles theoretical studies, we herein demonstrate that a single Si atom doped on the alternative pores of the porous graphitic carbon nitride (g-C6N6) surface has satisfied the above criteria and has the potential to be an efficient photocatalyst for ORR. Our study reveals that molecular oxygen, chemisorbed on the dopant atom of the doped surface via an end-on fashion, is activated and readily reduced with a very low onset potential (-0.07 V) via a four-electron transfer pathway. Thus, the doped system can act as an efficient metal-free photocathode in fuel cells.

12.
Phys Chem Chem Phys ; 23(2): 1527-1538, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33403379

RESUMO

H2O driven N2 fixation is known as the best alternative pathway to synthesise NH3 under ambient conditions. The thermodynamic non-spontaneous reaction can be accomplished by a photocatalytic water splitting reaction over a TiO2 supported surface with oxygen vacancies. Previous experiments have also shown N2 activation over a neutral Ru cluster whose catalytic activity was remarkably enhanced by TiO2 doping. In this article, we have investigated the detailed mechanism and kinetics of the H2O catalyzed nitrogen reduction reaction (NRR) over bare and TiO2 doped Ru5 clusters in conjunction with DFT and TST calculations. The lack of photochemical activity of the small model cluster provoked us to explore an alternative route of NH3 formation via H2O catalysis. For this, we have considered H2 as co-reactant. The partial reduction of N2 into NH3 or N2H4 could be achieved by a H2O oxidation reaction, however, catalytic regeneration requires additional H2 which effectively makes the overall reaction catalyzed by H2O. Above all, the present investigation suggests that NH3 is most favorably produced through the distal mechanism. Analysis of the rate constants demonstrates that the doping with TiO2 accelerates the kinetics of NRR by a few orders of magnitude. Furthermore, an increase of the size of the metal cluster would not significantly enhance the overall performance of NRR.

13.
J Phys Chem B ; 124(49): 11133-11144, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33226242

RESUMO

4'-N,N-Dimethylamino-3-hydroxyflavone (DMAHF), a synthetic fluorescent flavone analogue with potent antioxidant activity, was explored as a molecular rotor-like fluoroprobe for amyloid aggregations, a causative factor in Alzheimer's disease, Parkinson's disease, type-2 diabetes, etc. During its interactions with (human) insulin amyloid aggregation (IAA), its microenvironment was changed. This instigated a drastic change in its excited-state intramolecular proton transfer-based dual emission behavior, which was tracked to monitor its amyloid probing activity. Thus, the amyloid probing potential of DMAHF was originated from its interactions with IAA, which were studied by various spectroscopic techniques and molecular docking and quantum-mechanical calculations. Morphological changes of the IAA in the presence of DMAHF were studied by scanning electron microscopy. DMAHF also probed efficiently the islet amyloid polypeptide deposition in the pancreatic ß-cells of diabetic mice. DMAHF showed significant sensitivity and specificity towards amyloid aggregation without having any complexity in its photophysical behavior. This indicates its potential as an ideal bio-friendly and cost-effective fluoroprobe for amyloid proteins.


Assuntos
Diabetes Mellitus Experimental , Flavonas , Amiloide , Proteínas Amiloidogênicas , Animais , Antioxidantes , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Camundongos , Simulação de Acoplamento Molecular
14.
J Phys Chem A ; 124(23): 4782-4792, 2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32401514

RESUMO

Until now, reactions between methane photolysis products (CH3•, CH2) and active N atom or reactive NO radical are proposed as routes of HCN formation in the prebiotic Earth. Scientists think that the reducing atmosphere of primitive Earth was made of H2, He, N2, NO, CH4, H2O, CO2, etc., and there was no molecular oxygen. However, it has been evident from experiments that the vacuum ultraviolet (VUV) photolysis of CO2 can produce atomic oxygen. Therefore, it can be presumed that atomic oxygen was likely present in early Earth's atmosphere. Was there any impact of atomic oxygen in production of early atmospheric HCN for the emergence of life? To hunt for the answer, we have employed computational methods to study the mechanism and kinetics of CH3NO + O(1D) and CH2NO• + O(3P) addition reactions. Current study suggests that the addition of O(1D) into nitrosomethane (CH3NO) and the addition of O(3P) into nitrosomethylene radical (CH2NO•) can efficiently produce HCN through an effectively barrierless pathway. At STP, Bartis-Widom phenomenological loss rate coefficients of O(1D) and O(3P) are obtained as 2.47 × 10-12 and 4.67 × 10-11 cm3 molecule-1 s-1, respectively. We propose that addition reactions of atomic oxygen with CH3NO and CH2NO• might act as a potential source for early atmospheric HCN.

15.
Nanoscale Adv ; 2(4): 1502-1511, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36132296

RESUMO

Nonradiative electron-hole (e-h) recombination is the primary source of energy loss in photovoltaic cells and inevitably, it competes with the charge transfer process, leading to poor device performance. Therefore, much attention has to be paid for delaying such processes; increasing the excitonic lifetime may be a solution for this. Using the real-time, density functional tight-binding theory (DFTB) combined with nonadiabatic molecular dynamics (NAMD) simulations, we demonstrate the exciton relaxation phenomena of different metal-centered porphyrin nanoballs, which are supposed to be very important for the light-harvesting process. It has been revealed that the carrier recombination rate gradually decreases with the increase in the molecular stiffness by introducing metal-coordinating templating agents into the nanoball. Our simulation demonstrates that the lower atomic fluctuations lead to poorer electron-phonon nonadiabatic coupling in association with weak phonon modes and these as a whole are responsible for shorter quantum coherence and hence delayed recombination events. Our analysis is in good agreement with the recent experimental observation. By replacing the Zn metal center with a heavier Cd atom, a similar trend is observed; however, the rate slows down abruptly. The present simulation study provides the fundamental mechanism in detail behind the undesired energy loss during exciton recombination and suggests a rational design of impressive nanosystems for future device fabrication.

16.
Phys Chem Chem Phys ; 21(45): 25126-25138, 2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31691697

RESUMO

Hydrogen cyanide (HCN) has played a central role in the production of several biological molecules under prebiotic conditions on primitive Earth. Previously, K. J. Zahnle (J. Geophys. Res.: Atmos., 1986, 91, 2819) and Tian et al. (Earth Planet. Sci. Lett., 2011, 308, 417) emphasized that HCN production in the early Earth's CH4-rich atmosphere could have been possible through the reaction between active nitrogen atoms (N) and methane photolysis products. Here, we have proposed alternative pathways for the formation of early atmospheric HCN via the decomposition of CH3NO as an intermediate. In the early Earth's O2-free atmosphere, CH3˙ could preferentially attach to NO, which was generated via early atmospheric volcanism or lightning and photochemical processes. We have quantum chemically explored both unimolecular and bimolecular decomposition pathways of CH3NO via the assistance of another CH3NO molecule and via H2O, NH3, HCl, HCOOH, HNO3 and H2SO4 catalysis. Both energetic and kinetic analyses reveal that H2SO4 is more efficient in this regard than other atmospheric species. Overall, it has been suggested that the proposed bimolecular decomposition pathways might have been alternative pathways for the formation of HCN under certain conditions on prebiotic Earth, while the unimolecular decomposition of CH3NO could lead to the formation of HCN in the high temperature volcanic environment on early Earth.

17.
Dalton Trans ; 48(42): 16083-16090, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31616883

RESUMO

A recent experiment has revealed that additive free ester hydrogenation by Co-pincer complexes might follow an unusual non-bifunctional mechanism, however, the detailed mechanistic pathway is missing. It has been predicted that several intermediates and transition states are involved, having their essential role in the catalytic performances. Detailed theoretical studies are therefore essential in this regard for achieving more efficient ester hydrogenation catalysts. On the basis of first principles calculations, performed over Co(PNP)/(PNN) complexes, we present here the energetics and mechanistic details, showing the distinct orientations of different possible intermediates and transition states, and find the minimum energy pathway for the conversion of esters to alcohols. In the way, we find that some intermediates must undergo structural distortion for achieving the lowest potential energy barrier which must have a severe impact on the catalytic turnover frequency.

18.
Phys Chem Chem Phys ; 21(14): 7483-7490, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30892323

RESUMO

Gas phase hydrogenation of CO2 to HCO2- by coinage-metal hydride anions, MH- (M = Cu, Ag and Au), has been studied with the help of high level computational methodologies. We demonstrate that these hydride anions perform excellently in the specific hydrogenation of CO2 to HCO2-. More precisely, AgH- is shown to be very active for this particular purpose. We show that CO2 activation through the M-HCO2 pathway passes through a very low energy barrier and produces HCO2-; even the metal centered activation (H-MCO2) also leads to the same product through an energy barrier less than 15 kcal mol-1. A closer inspection demonstrates that electronegativity, size of the metal and hydricity of the MH- species control the overall hydrogenation process.

19.
Colloids Surf B Biointerfaces ; 172: 440-450, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30196229

RESUMO

Six structurally different carbazoles (1-6) were explored as the green reducing agents for the synthesis of the fluorescent Au nanoparticles with tailor-made morphology in anionic (sodium dodecyl sulphate, SDS), cationic (cetyltrimethylammonium bromide, CTAB) and neutral (polyvinylpyrrolidone, PVP) micelle medium. Structure of the carbazoles played an important role in controlling the morphology, rate of formation and fluorescent activity of the Au nanoparticles. The Au nanoparticles formed in-situ also simultaneously catalyzed the intermolecular CC and NN couplings between the carbazoles, leading to the corresponding bis-carbazole derivatives. The free and bis-carbazole derivatives functionalized the surface of the synthesized Au nanoparticles and thereby controlling their morphology and fluorescence activity. A computational study was also made to determine the origin of the absorption and emission bands of the synthesized nanoparticles. The combined experimental and theoretical studies unraveled the nanoparticle formation process and mechanistic pathway of this green and easily implementable synthetic protocol of Au nanoparticles.


Assuntos
Carbazóis/química , Carbazóis/síntese química , Ouro/química , Nanopartículas Metálicas/química , Modelos Teóricos , Cinética , Nanopartículas Metálicas/ultraestrutura , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
20.
J Phys Chem A ; 122(38): 7532-7539, 2018 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-30180569

RESUMO

Tuning photoluminescence properties is of prime importance for designing efficient light emitting diode (LED) materials. Here, we perform a computational study on the effect of normal N-heterocyclic carbene (NHC) and abnormal mesoionic carbene (MIC) ligands on the photoluminescence properties of some Ir(III) complexes, which are very promising LED materials. We find MIC as the privileged ligand in designing triplet emitters. The strong σ-donating and moderate π-accepting properties of MIC render a lower access to the nonemissive triplet metal-centered state (3MC), resulting in lowering the nonradiative rate constant ( knr) and correspondingly achieving higher quantum efficiency. We also demonstrate that the judicial choice of ancillary ligand can improve the efficiency of these materials even further. This quantum chemical investigation focuses on the importance of MIC as cyclometalating ligand and the substantial effects of ancillary ligands in controlling the color tuning and quantum efficiency for optoelectronic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...