Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Med ; 13(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38930155

RESUMO

Background: Respiratory effort is considered important in the context of the diagnosis of obstructive sleep apnoea (OSA), as well as other sleep disorders. However, current monitoring techniques can be obtrusive and interfere with a patient's natural sleep. This study examines the reliability of an unobtrusive tracheal sound-based approach to monitor respiratory effort in the context of OSA, using manually marked respiratory inductance plethysmography (RIP) signals as a gold standard for validation. Methods: In total, 150 patients were trained on the use of type III cardiorespiratory polygraphy, which they took to use at home, alongside a neck-worn AcuPebble system. The respiratory effort channels obtained from the tracheal sound recordings were compared to the effort measured by the RIP bands during automatic and manual marking experiments. A total of 133 central apnoeas, 218 obstructive apnoeas, 263 obstructive hypopneas, and 270 normal breathing randomly selected segments were shuffled and blindly marked by a Registered Polysomnographic Technologist (RPSGT) in both types of channels. The RIP signals had previously also been independently marked by another expert clinician in the context of diagnosing those patients, and without access to the effort channel of AcuPebble. The classification achieved with the acoustically obtained effort was assessed with statistical metrics and the average amplitude distributions per respiratory event type for each of the different channels were also studied to assess the overlap between event types. Results: The performance of the acoustic effort channel was evaluated for the events where both scorers were in agreement in the marking of the gold standard reference channel, showing an average sensitivity of 90.5%, a specificity of 98.6%, and an accuracy of 96.8% against the reference standard with blind expert marking. In addition, a comparison using the Embla Remlogic 4.0 automatic software of the reference standard for classification, as opposed to the expert marking, showed that the acoustic channels outperformed the RIP channels (acoustic sensitivity: 71.9%; acoustic specificity: 97.2%; RIP sensitivity: 70.1%; RIP specificity: 76.1%). The amplitude trends across different event types also showed that the acoustic channels exhibited a better differentiation between the amplitude distributions of different event types, which can help when doing manual interpretation. Conclusions: The results prove that the acoustically obtained effort channel extracted using AcuPebble is an accurate, reliable, and more patient-friendly alternative to RIP in the context of OSA.

2.
J Clin Med ; 13(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276077

RESUMO

STUDY OBJECTIVE: The objective of this study was to assess the accuracy of automatic diagnosis of obstructive sleep apnea (OSA) with a new, small, acoustic-based, wearable technology (AcuPebble SA100), by comparing it with standard type 1 polysomnography (PSG) diagnosis. MATERIAL AND METHODS: This observational, prospective study was carried out in a Spanish hospital sleep apnea center. Consecutive subjects who had been referred to the hospital following primary care suspicion of OSA were recruited and underwent in-laboratory attended PSG, together with the AcuPebble SA100 device simultaneously overnight from January to December 2022. RESULTS: A total of 80 patients were recruited for the trial. The patients had a median Epworth scoring of 10, a mean of 10.4, and a range of 0-24. The mean AHI obtained with PSG plus sleep clinician marking was 23.2, median 14.3 and range 0-108. The study demonstrated a diagnostic accuracy (based on AHI) of 95.24%, sensitivity of 92.86%, specificity of 97.14%, positive predictive value of 96.30%, negative predictive value of 94.44%, positive likelihood ratio of 32.50 and negative likelihood ratio of 0.07. CONCLUSIONS: The AcuPebble SA100 (EU) device has demonstrated an accurate automated diagnosis of OSA in patients undergoing in-clinic sleep testing when compared against the gold-standard reference of in-clinic PSG.

3.
Med Biol Eng Comput ; 60(12): 3539-3554, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36245021

RESUMO

The novel pulse oximetry measurement site of the neck is a promising location for multi-modal physiological monitoring. Specifically, in the context of respiratory monitoring, in which it is important to have direct information about airflow. The neck makes this possible, in contrast to common photoplethysmography (PPG) sensing sites. However, this PPG signal is susceptible to artifacts that critically impair the signal quality. To fully exploit neck PPG for reliable physiological parameters extraction and apneas monitoring, this paper aims to develop two classification algorithms for artifacts and apnea detection. Features from the time, correlogram, and frequency domains were extracted. Two SVM classifiers with RBF kernels were trained for different window (W) lengths and thresholds (Thd) of corruption. For artifacts classification, the maximum performance was attained for the parameters combination of [W = 6s-Thd= 20%], with an average accuracy= 85.84%(ACC), sensitivity= 85.43%(SE) and specificity= 86.26%(SP). For apnea detection, the model [W = 10s-Thd= 50%] maximized all the performance metrics significantly (ACC= 88.25%, SE= 89.03%, SP= 87.42%). The findings of this proof of concept are significant for denoising novel neck PPG signals, and demonstrate, for the first time, that it is possible to promptly detect apnea events from neck PPG signals in an instantaneous manner. This could make a big impact in crucial real-time applications, like devices to prevent sudden-unexpected-death-in-epilepsy (SUDEP).


Assuntos
Artefatos , Fotopletismografia , Humanos , Apneia , Frequência Cardíaca/fisiologia , Algoritmos , Dor no Peito , Processamento de Sinais Assistido por Computador
4.
BMJ Open ; 11(12): e046803, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34933855

RESUMO

OBJECTIVES: Obstructive sleep apnoea (OSA) is a heavily underdiagnosed condition, which can lead to significant multimorbidity. Underdiagnosis is often secondary to limitations in existing diagnostic methods. We conducted a diagnostic accuracy and usability study, to evaluate the efficacy of a novel, low-cost, small, wearable medical device, AcuPebble_SA100, for automated diagnosis of OSA in the home environment. SETTINGS: Patients were recruited to a standard OSA diagnostic pathway in an UK hospital. They were trained on the use of type-III-cardiorespiratory polygraphy, which they took to use at home. They were also given AcuPebble_SA100; but they were not trained on how to use it. PARTICIPANTS: 182 consecutive patients had been referred for OSA diagnosis in which 150 successfully completed the study. PRIMARY OUTCOME MEASURES: Efficacy of AcuPebble_SA100 for automated diagnosis of moderate-severe-OSA against cardiorespiratory polygraphy (sensitivity/specificity/likelihood ratios/predictive values) and validation of usability by patients themselves in their home environment. RESULTS: After returning the systems, two expert clinicians, blinded to AcuPebble_SA100's output, manually scored the cardiorespiratory polygraphy signals to reach a diagnosis. AcuPebble_SA100 generated automated diagnosis corresponding to four, typically followed, diagnostic criteria: Apnoea Hypopnoea Index (AHI) using 3% as criteria for oxygen desaturation; Oxygen Desaturation Index (ODI) for 3% and 4% desaturation criteria and AHI using 4% as desaturation criteria. In all cases, AcuPebble_SA100 matched the experts' diagnosis with positive and negative likelihood ratios over 10 and below 0.1, respectively. Comparing against the current American Academy of Sleep Medicine's AHI-based criteria demonstrated 95.33% accuracy (95% CI (90·62% to 98·10%)), 96.84% specificity (95% CI (91·05% to 99·34%)), 92.73% sensitivity (95% CI (82·41% to 97·98%)), 94.4% positive-predictive value (95% CI (84·78% to 98·11%)) and 95.83% negative-predictive value (95% CI (89·94% to 98·34%)). All patients used AcuPebble_SA100 correctly. Over 97% reported a strong preference for AcuPebble_SA100 over cardiorespiratory polygraphy. CONCLUSIONS: These results validate the efficacy of AcuPebble_SA100 as an automated diagnosis alternative to cardiorespiratory polygraphy; also demonstrating that AcuPebble_SA100 can be used by patients without requiring human training/assistance. This opens the doors for more efficient patient pathways for OSA diagnosis. TRIAL REGISTRATION NUMBER: NCT03544086; ClinicalTrials.gov.


Assuntos
Ambiente Domiciliar , Apneia Obstrutiva do Sono , Humanos , Valor Preditivo dos Testes , Sensibilidade e Especificidade , Sono , Apneia Obstrutiva do Sono/diagnóstico , Apneia Obstrutiva do Sono/terapia
5.
PLoS One ; 14(3): e0213659, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30861052

RESUMO

Chronic Respiratory Diseases (CRDs), such as Asthma and Chronic Obstructive Pulmonary Disease (COPD), are leading causes of deaths worldwide. Although both Asthma and COPD are not curable, they can be managed by close monitoring of symptoms to prevent worsening of the condition. One key symptom that needs to be monitored is the occurrence of wheezing sounds during breathing since its early identification could prevent serious exacerbations. Since wheezing can happen randomly without warning, a long-term monitoring system with automatic wheeze detection could be extremely helpful to manage these respiratory diseases. This study evaluates the discriminatory ability of different types of feature used in previous related studies, with a total size of 105 individual features, for automatic identification of wheezing sound during breathing. A linear classifier is used to determine the best features for classification by evaluating several performance metrics, including ranksum statistical test, area under the sensitivity--specificity curve (AUC), F1 score, Matthews Correlation Coefficient (MCC), and relative computation time. Tonality index attained the highest effect size, at 87.95%, and was found to be the feature with the lowest p-value when ranksum significance test was performed. Third MFCC coefficient achieved the highest AUC and average optimum F1 score at 0.8919 and 82.67% respectively, while the highest average optimum MCC was obtained by the first coefficient of a 6th order LPC. The best possible combination of two and three features for wheeze detection is also studied. The study concludes with an analysis of the different trade-offs between accuracy, reliability, and computation requirements of the different features since these will be highly useful for researchers when designing algorithms for automatic wheeze identification.


Assuntos
Asma/diagnóstico , Diagnóstico por Computador/métodos , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Respiração , Sons Respiratórios/classificação , Processamento de Sinais Assistido por Computador , Algoritmos , Área Sob a Curva , Reações Falso-Positivas , Humanos , Modelos Lineares , Modelos Estatísticos , Reconhecimento Automatizado de Padrão , Análise de Regressão , Reprodutibilidade dos Testes , Análise de Ondaletas
6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 4686-4689, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31946908

RESUMO

Monitoring of wheezes is an integral part of managing Chronic Respiratory Diseases such as asthma and Chronic Obstructive Pulmonary Disease (COPD). Recently, there is a growing interest in automatic detection of wheezes and the use of Mel-Frequency Cepstral Coefficients (MFCC) have been shown to achieve encouraging detection performance. While the successful use of MFCC for identifying wheezes has been demonstrated, it is not clear which MFCC coefficients are actually useful for detecting wheezes. The objective of this paper is to characterize and study the effectiveness of individual coefficients in discriminating between wheezes and normal respiratory sounds. The coefficients have been evaluated in terms of histogram dissimilarity and linear separability. Further, a comparison between the use of single coefficient against other combinations of coefficients is also presented. The results demonstrate MFCC-2 coefficient to be significantly more effective than all the other coefficients in discriminating between wheezes and normal respiratory sounds sampled at 8000 Hz.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Diagnóstico por Computador , Humanos , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Sons Respiratórios , Processamento de Sinais Assistido por Computador
7.
PLoS One ; 12(5): e0177926, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28552969

RESUMO

BACKGROUND: Automatic detection or classification of adventitious sounds is useful to assist physicians in diagnosing or monitoring diseases such as asthma, Chronic Obstructive Pulmonary Disease (COPD), and pneumonia. While computerised respiratory sound analysis, specifically for the detection or classification of adventitious sounds, has recently been the focus of an increasing number of studies, a standardised approach and comparison has not been well established. OBJECTIVE: To provide a review of existing algorithms for the detection or classification of adventitious respiratory sounds. This systematic review provides a complete summary of methods used in the literature to give a baseline for future works. DATA SOURCES: A systematic review of English articles published between 1938 and 2016, searched using the Scopus (1938-2016) and IEEExplore (1984-2016) databases. Additional articles were further obtained by references listed in the articles found. Search terms included adventitious sound detection, adventitious sound classification, abnormal respiratory sound detection, abnormal respiratory sound classification, wheeze detection, wheeze classification, crackle detection, crackle classification, rhonchi detection, rhonchi classification, stridor detection, stridor classification, pleural rub detection, pleural rub classification, squawk detection, and squawk classification. STUDY SELECTION: Only articles were included that focused on adventitious sound detection or classification, based on respiratory sounds, with performance reported and sufficient information provided to be approximately repeated. DATA EXTRACTION: Investigators extracted data about the adventitious sound type analysed, approach and level of analysis, instrumentation or data source, location of sensor, amount of data obtained, data management, features, methods, and performance achieved. DATA SYNTHESIS: A total of 77 reports from the literature were included in this review. 55 (71.43%) of the studies focused on wheeze, 40 (51.95%) on crackle, 9 (11.69%) on stridor, 9 (11.69%) on rhonchi, and 18 (23.38%) on other sounds such as pleural rub, squawk, as well as the pathology. Instrumentation used to collect data included microphones, stethoscopes, and accelerometers. Several references obtained data from online repositories or book audio CD companions. Detection or classification methods used varied from empirically determined thresholds to more complex machine learning techniques. Performance reported in the surveyed works were converted to accuracy measures for data synthesis. LIMITATIONS: Direct comparison of the performance of surveyed works cannot be performed as the input data used by each was different. A standard validation method has not been established, resulting in different works using different methods and performance measure definitions. CONCLUSION: A review of the literature was performed to summarise different analysis approaches, features, and methods used for the analysis. The performance of recent studies showed a high agreement with conventional non-automatic identification. This suggests that automated adventitious sound detection or classification is a promising solution to overcome the limitations of conventional auscultation and to assist in the monitoring of relevant diseases.


Assuntos
Automação , Sons Respiratórios , Asma/diagnóstico , Asma/fisiopatologia , Humanos , Pneumonia/diagnóstico , Pneumonia/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/fisiopatologia
8.
PLoS One ; 11(9): e0162128, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27583523

RESUMO

Pertussis is a contagious respiratory disease which mainly affects young children and can be fatal if left untreated. The World Health Organization estimates 16 million pertussis cases annually worldwide resulting in over 200,000 deaths. It is prevalent mainly in developing countries where it is difficult to diagnose due to the lack of healthcare facilities and medical professionals. Hence, a low-cost, quick and easily accessible solution is needed to provide pertussis diagnosis in such areas to contain an outbreak. In this paper we present an algorithm for automated diagnosis of pertussis using audio signals by analyzing cough and whoop sounds. The algorithm consists of three main blocks to perform automatic cough detection, cough classification and whooping sound detection. Each of these extract relevant features from the audio signal and subsequently classify them using a logistic regression model. The output from these blocks is collated to provide a pertussis likelihood diagnosis. The performance of the proposed algorithm is evaluated using audio recordings from 38 patients. The algorithm is able to diagnose all pertussis successfully from all audio recordings without any false diagnosis. It can also automatically detect individual cough sounds with 92% accuracy and PPV of 97%. The low complexity of the proposed algorithm coupled with its high accuracy demonstrates that it can be readily deployed using smartphones and can be extremely useful for quick identification or early screening of pertussis and for infection outbreaks control.


Assuntos
Algoritmos , Tosse/diagnóstico , Coqueluche/diagnóstico , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...