Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Inform ; 36(10)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28402598

RESUMO

Quantitative structure-property relationships represent alternative method to experiments to access the estimation of physico-chemical properties of chemicals for screening purpose at R&D level but also to gather missing data in regulatory context. In particular, such predictions were encouraged by the REACH regulation for the collection of data, provided that they are developed respecting the rigorous principles of validation proposed by OECD. In this context, a series of organic peroxides, unstable chemicals which can easily decompose and may lead to explosion, were investigated to develop simple QSPR models that can be used in a regulatory framework. Only constitutional and topological descriptors were employed to achieve QSPR models predicting the heat of decomposition, which could be used without any time consuming preliminary structure calculations at quantum chemical level. To validate the models, the original experimental dataset was divided into a training and a validation set according to two methods of partitioning, one based on the property value and the other based on the structure of the molecules by the mean of PCA. Four QSPR models were developed upon the type of descriptors and the methods of partitioning. The 2 models issuing from the PCA based method were highlighted as they presented good predictive power and they are easier to apply than our previous quantum chemical based model, since they do not need any preliminary calculations.


Assuntos
Compostos Orgânicos/química , Peróxidos/química , Relação Quantitativa Estrutura-Atividade , Algoritmos , Estabilidade de Medicamentos , Temperatura Alta
2.
J Hazard Mater ; 276: 216-24, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24887124

RESUMO

Organic peroxides are unstable chemicals which can easily decompose and may lead to explosion. Such a process can be characterized by physico-chemical parameters such as heat and temperature of decomposition, whose determination is crucial to manage related hazards. These thermal stability properties are also required within many regulatory frameworks related to chemicals in order to assess their hazardous properties. In this work, new quantitative structure-property relationships (QSPR) models were developed to predict accurately the thermal stability of organic peroxides from their molecular structure respecting the OECD guidelines for regulatory acceptability of QSPRs. Based on the acquisition of 38 reference experimental data using DSC (differential scanning calorimetry) apparatus in homogenous experimental conditions, multi-linear models were derived for the prediction of the decomposition heat and the onset temperature using different types of molecular descriptors. Models were tested by internal and external validation tests and their applicability domains were defined and analyzed. Being rigorously validated, they presented the best performances in terms of fitting, robustness and predictive power and the descriptors used in these models were linked to the peroxide bond whose breaking represents the main decomposition mechanism of organic peroxides.


Assuntos
Peróxidos/química , Relação Quantitativa Estrutura-Atividade , Temperatura
3.
J Hazard Mater ; 235-236: 169-77, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22871414

RESUMO

The European regulation of chemicals named REACH implies the assessment of a large number of substances based on their hazardous properties. However, the complete characterization of physico-chemical, toxicological and eco-toxicological properties by experimental means is incompatible with the imposed calendar of REACH. Hence, there is a real need in evaluating the capabilities of alternative methods such as quantitative structure-property relationship (QSPR) models, notably for physico-chemical properties. In the present work, the molecular structures of 50 itroaliphatic compounds were correlated with their impact sensitivities (h(50%)) using such predictive models. More than 400 olecular descriptors (constitutional, topological, geometrical, quantum chemical) were calculated and linear and multi-linear regressions were performed to find accurate quantitative relationships with experimental impact sensitivities. Considering different sets of descriptors, four predictive models were obtained and two of them were selected for their predictive reliability. To our knowledge, these QSPR models for the impact sensitivity of nitroaliphatic compounds are the first ones being rigorously validated (both internally and externally) with defined applicability domains. They hence follow all OECD principles for regulatory acceptability of QSPRs, allowing possible application in REACH.


Assuntos
Modelos Químicos , Nitrocompostos/química , Relação Quantitativa Estrutura-Atividade , Hidrocarbonetos/química , Modelos Lineares , Estrutura Molecular , Reprodutibilidade dos Testes
4.
Angew Chem Int Ed Engl ; 48(31): 5724-8, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19562814
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...