Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
2.
Environ Sci Pollut Res Int ; 25(5): 3996-4010, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27928753

RESUMO

In numerous cases, the German health-related indication value (HRIV) concept has proved its practicability for the assessment of drinking water relevant trace substances (Umweltbundesamt 2003). The HRIV is based on the toxicological profile of a substance. An open point of the HRIV concept has been the assignment of standardized test procedures to be used for the assessment. The level of the HRIV is at its lowest as soon as the genotoxicity of the substance is detected. As a single test on its own, it is not sufficient enough to assess the human toxicological relevance of a genotoxic effect or exclude it in the case of a negative result; a reasonable test battery was required, technically oriented towards the already harmonized international, hierarchical evaluation for toxicological assessment of chemicals. Therefore, an important aim of this project was to define a strategy for the genotoxicological assessment of anthropogenic trace substances. The basic test battery for genotoxicity of micropollutants in drinking water needs to fulfill several requirements. Although quick test results are needed for the determination of HRIV, a high degree of transferability to human genotoxicity should be ensured. Therefore, an in vitro genotoxicity test battery consisting of the Ames fluctuation test with two tester strains (ISO 11350), the umu test and the micronucleus test, or from the Ames test with five tester strains (OECD 471) and the micronucleus test is proposed. On the basis of selected test substances, it could be shown that the test battery leads to positive, indifferent, and negative results. Given indifferent results, the health authority and the water supplier must assume that it is a genotoxic substance. Genetically modified tester strains are being sensitive to different chemical classes by expression of selected mammalian key enzymes for example nitroreductase, acetyltransferase, and glutathione-S-transferase. These strains may provide valuable additional information and may give a first indication of the mechanism of action. To check this hypothesis, various additional strains expressing specific human-relevant enzymes were investigated. It could be shown that the additional use of genetically modified tester strains can enhance the detectable substance spectrum with the bacterial genotoxicological standard procedures or increase the sensitivity. The additional use provides orienting information at this level as a lot of data can be obtained quite quickly and with little effort. These indications of the mechanism of action should be however verified with a test system that uses mammalian cells, better human cells, to check their actual relevance. The selection of appropriate additional tester strains has to be defined from case to case depending on the molecular structure and also still requires some major expertise.


Assuntos
Dano ao DNA , Poluentes Ambientais/toxicidade , Testes de Mutagenicidade/métodos , Animais , Cricetulus , Técnicas In Vitro , Camundongos , Testes para Micronúcleos , Salmonella typhimurium/efeitos dos fármacos
3.
Toxicol Sci ; 126(1): 173-82, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22262566

RESUMO

The specific properties of nanoscale particles, large surface-to-mass ratios and highly reactive surfaces, have increased their commercial application in many fields. However, the same properties are also important for the interaction and bioaccumulation of the nonbiodegradable nanoscale particles in a biological system and are a cause for concern. Hematite (α-Fe2O3), being a mineral form of Fe(III) oxide, is one of the most used iron oxides besides magnetite. The aim of our study was the characterization and comparison of biophysical reactivity and toxicological effects of α-Fe2O3 nano- (d < 100 nm) and microscale (d < 5 µm) particles in human lung cells. Our study demonstrates that the surface reactivity of nanoscale α-Fe2O3 differs from that of microscale particles with respect to the state of agglomeration, radical formation potential, and cellular toxicity. The presence of proteins in culture medium and agglomeration were found to affect the catalytic properties of the hematite nano- and microscale particles. Both the nano- and microscale α-Fe2O3 particles were actively taken up by human lung cells in vitro, although they were not found in the nuclei and mitochondria. Significant genotoxic effects were only found at very high particle concentrations (> 50 µg/ml). The nanoscale particles were slightly more potent in causing cyto- and genotoxicity as compared with their microscale counterparts. Both types of particles induced intracellular generation of reactive oxygen species. This study underlines that α-Fe2O3 nanoscale particles trigger different toxicological reaction pathways than microscale particles. However, the immediate environment of the particles (biomolecules, physiological properties of medium) modulates their toxicity on the basis of agglomeration rather than their actual size.


Assuntos
Brônquios/efeitos dos fármacos , Compostos Férricos/toxicidade , Nanopartículas Metálicas/toxicidade , Brônquios/metabolismo , Brônquios/ultraestrutura , Linhagem Celular Transformada , Sobrevivência Celular/efeitos dos fármacos , Fenômenos Químicos , Ensaio Cometa , Dano ao DNA , Espectroscopia de Ressonância de Spin Eletrônica , Endocitose , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Compostos Férricos/química , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo , Solubilidade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...