Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 45(8): 3768-73, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21413758

RESUMO

Natural clays have been used in ancient and modern medicine, but the mechanism(s) that make certain clays lethal against bacterial pathogens has not been identified. We have compared the depositional environments, mineralogies, and chemistries of clays that exhibit antibacterial effects on a broad spectrum of human pathogens including antibiotic resistant strains. Natural antibacterial clays contain nanoscale (<200 nm), illite-smectite and reduced iron phases. The role of clay minerals in the bactericidal process is to buffer the aqueous pH and oxidation state to conditions that promote Fe(2+) solubility. Chemical analyses of E. coli killed by aqueous leachates of an antibacterial clay show that intracellular concentrations of Fe and P are elevated relative to controls. Phosphorus uptake by the cells supports a regulatory role of polyphosphate or phospholipids in controlling Fe(2+). Fenton reaction products can degrade critical cell components, but we deduce that extracellular processes do not cause cell death. Rather, Fe(2+) overwhelms outer membrane regulatory proteins and is oxidized when it enters the cell, precipitating Fe(3+) and producing lethal hydroxyl radicals.


Assuntos
Silicatos de Alumínio/química , Antibacterianos/análise , Escherichia coli/efeitos dos fármacos , Silicatos de Alumínio/toxicidade , Antibacterianos/química , Antibacterianos/toxicidade , Argila , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Concentração de Íons de Hidrogênio , Radical Hidroxila/química , Ferro/metabolismo , Microscopia Eletrônica de Transmissão , Minerais/análise , Minerais/química , Minerais/toxicidade , Oxirredução , Fósforo/metabolismo , Silicatos/análise , Silicatos/química , Silicatos/toxicidade
2.
Anal Bioanal Chem ; 394(1): 255-66, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19242682

RESUMO

Traditional methods for the analysis of trace metals require particulate matter (PM) collected on specific filter substrates. In this paper, methods for elemental analysis of PM collected on substrates commonly used for organic analysis in air quality studies are developed. Polyurethane foam (PUF), polypropylene (PP), and quartz fiber (QF) substrates were first digested in a mixture of HNO(3)/HCl/HF/H(2)O(2) using a microwave digestion system and then analyzed for elements by inductively coupled plasma mass spectrometry. Filter blanks and recoveries for standard reference materials (SRMs) on these substrates were compared with a cellulose (CL) substrate, more commonly used for trace metal analysis in PM. The results show concentrations of filter blanks in the order of QF > PUF > PP > CL with a high variability in PUF and PP blanks relative to QF. Percent recovery of most elements from the SRMs on all substrates are within +/-20% of certified or reference values. QF substrates showed consistent blanks with a reproducibility better than +/-10% for the majority of elements. Therefore, QF substrates were applied to ambient PM collected in a variety of environments from pristine to polluted. Concentrations of field blanks for > or = 18 of 31 elements analyzed on a small section of QF substrate are < or = 25% of the amounts present in samples for urban atmospheres. Results suggest that QF used in a high-volume sampler can be a suitable substrate to quantify trace elements, in addition to organic species and hence reduce logistics and costs in air pollution studies.


Assuntos
Poluição do Ar/análise , Atmosfera/química , Celulose/análise , Polipropilenos/análise , Poliuretanos/análise , Quartzo/análise , Espectrometria de Massas , Padrões de Referência , Reprodutibilidade dos Testes
3.
Water Res ; 42(3): 551-6, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17707454

RESUMO

Antimony is a regulated contaminant that poses both acute and chronic health effects in drinking water. Previous reports suggest that polyethylene terephthalate (PET) plastics used for water bottles in Europe and Canada leach antimony, but no studies on bottled water in the United States have previously been conducted. Nine commercially available bottled waters in the southwestern US (Arizona) were purchased and tested for antimony concentrations as well as for potential antimony release by the plastics that compose the bottles. The southwestern US was chosen for the study because of its high consumption of bottled water and elevated temperatures, which could increase antimony leaching from PET plastics. Antimony concentrations in the bottled waters ranged from 0.095 to 0.521 ppb, well below the US Environmental Protection Agency (USEPA) maximum contaminant level (MCL) of 6 ppb. The average concentration was 0.195+/-0.116 ppb at the beginning of the study and 0.226+/-0.160 ppb 3 months later, with no statistical differences; samples were stored at 22 degrees C. However, storage at higher temperatures had a significant effect on the time-dependent release of antimony. The rate of antimony (Sb) release could be fit by a power function model (Sb(t)=Sb 0 x[Time, h]k; k=8.7 x 10(-6)x[Temperature ( degrees C)](2.55); Sb 0 is the initial antimony concentration). For exposure temperatures of 60, 65, 70, 75, 80, and 85 degrees C, the exposure durations necessary to exceed the 6 ppb MCL are 176, 38, 12, 4.7, 2.3, and 1.3 days, respectively. Summertime temperatures inside of cars, garages, and enclosed storage areas can exceed 65 degrees C in Arizona, and thus could promote antimony leaching from PET bottled waters. Microwave digestion revealed that the PET plastic used by one brand contained 213+/-35 mgSb/kg plastic; leaching of all the antimony from this plastic into 0.5L of water in a bottle could result in an antimony concentration of 376 ppb. Clearly, only a small fraction of the antimony in PET plastic bottles is released into the water. Still, the use of alternative types of plastics that do not leach antimony should be considered, especially for climates where exposure to extreme conditions can promote antimony release from PET plastics.


Assuntos
Antimônio/análise , Embalagem de Alimentos , Plásticos/química , Polietilenotereftalatos/química , Poluentes Químicos da Água/análise , Abastecimento de Água/análise , Plásticos/efeitos da radiação , Polietilenotereftalatos/efeitos da radiação , Luz Solar , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...