Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Clin Endocrinol Diabetes ; 132(1): 23-32, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38049105

RESUMO

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 can affect the hypothalamic-pituitary-gonadal axis (HPG) due to the expression of the angiotensin-converting enzyme 2 receptor. OBJECTIVES: To assess the prevalence of hypogonadism and Sertoli cell dysfunction in coronavirus disease 2019 (COVID-19) male survivors. METHOD: Male subjects recovered from acute COVID-19 infection were prospectively observed. The primary outcomes included the proportion of hypogonadism, defined biochemically as serum testosterone<230 ng/dL or CFT of<6.4 ng/mL if the total testosterone is between 230-320 ng/m. Sertoli cell dysfunction was defined as inhibin-B level<54.5 pg/mL. Subjects with hypogonadism were followed up at 12 months to assess the recovery of the HPG axis. RESULTS: Eighty-three subjects aged≥18 years were evaluated at a median of 120 (±35) days post-recovery. Their mean age was 49.50±12.73 years, and the mean BMI was 26.84±5.62 kg/m2. Low testosterone was detected in 21 (24.71%) and low inhibin-B was detected in 14 (19.71%) out of 71 subjects at 3 months. Subjects with low testosterone were younger, with a mean age of 43.29±12.03 years (P-0.08) and higher BMI (P-0.012). The severity of COVID-19 infection, duration of hospitalization, and other factors were not significantly associated with low testosterone. At 12 months, 18 out of 21 subjects came for follow-up, of which 9 (50%) showed persistently low testosterone, suggestive of hypogonadism. CONCLUSION: Following COVID-19 infection, testosterone levels recovered over time; however, a significant proportion of subjects had low levels at 12-month follow-up. These findings have long-term implications for the management of COVID-19 subjects.


Assuntos
COVID-19 , Hipogonadismo , Humanos , Masculino , Adulto , Pessoa de Meia-Idade , COVID-19/complicações , Hipogonadismo/epidemiologia , Hipogonadismo/etiologia , Testosterona , Estudos Prospectivos , Inibinas
2.
Endocr Res ; 48(4): 85-93, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37565765

RESUMO

CONTEXT: Coronavirus disease 2019 (COVID-19) predominantly involves the lungs, albeit many other organ systems, including the hypothalamic-pituitary-adrenal (HPA) axis, can be affected due to the expression of the angiotensin-converting enzyme 2 (ACE2) binding receptor. Few studies have reported the involvement of adrenal gland and the HPA axis during the acute phase of COVID-19; however, the data on the long-term effect of COVID-19 on the HPA axis after acute infection is scarce. OBJECTIVE: To assess and compare the changes in HPA axis in mild, moderate and severe COVID-19 categories at ≥ 3 months after acute infection. METHODS: A prospective, observational study was conducted to assess the HPA axis status among COVID-19 subjects at least 3 months after recovery from acute infection. The study was conducted from June 2021 to May 2022. Subjects visited the hospital in the fasting state (8.00-9.00am), serum cortisol levels were measured at baseline, 30 and 60 minutes after a 1-µg short Synacthen test (SST). RESULTS: A total of 66 subjects ≥ 18 years of age were included in the study. The mean age (SD) was 49.13 ± 11.9 years, 45(68.18%) were male and 21 (31.81%) were female subjects. The mean BMI in the study was 25.91 ± 4.26 kg/m2. Seventeen (25.8%) subjects had mild, twelve (18.2%) had moderate and thirty-seven (56.1%) subjects had severe COVID-19 infection. Out of the sixty-six subjects with COVID-19, nine subjects (9/66, 13.63%) had peak serum cortisol < 496.62 nmol/L suggestive of adrenal insufficiency (AI). SST peak serum cortisol levels did not differ significantly across the disease severity [Mild, (628.50 ± 214.65 nmol/L) vs moderate, [603.39 ± 161.95 nmol/L) vs severe, (597.59 ± 163.05 nmol/L), P = 0.617]. Six subjects with AI came for follow-up at 12 months, and all had normal HPA axis. CONCLUSION: HPA axis is affected in 13.63% (9/66) of subjects at least 3 months after recovery from COVID-19 infection. AI in COVID-19 might be transient and would recover spontaneously. These findings have important implications for the clinical care and long-term follow-up of subjects after COVID-19 infection.

3.
Nat Commun ; 12(1): 4489, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301952

RESUMO

Ancient polyploidization events have had a lasting impact on vertebrate genome structure, organization and function. Some key questions regarding the number of ancient polyploidization events and their timing in relation to the cyclostome-gnathostome divergence have remained contentious. Here we generate de novo long-read-based chromosome-scale genome assemblies for the Japanese lamprey and elephant shark. Using these and other representative genomes and developing algorithms for the probabilistic macrosynteny model, we reconstruct high-resolution proto-vertebrate, proto-cyclostome and proto-gnathostome genomes. Our reconstructions resolve key questions regarding the early evolutionary history of vertebrates. First, cyclostomes diverged from the lineage leading to gnathostomes after a shared tetraploidization (1R) but before a gnathostome-specific tetraploidization (2R). Second, the cyclostome lineage experienced an additional hexaploidization. Third, 2R in the gnathostome lineage was an allotetraploidization event, and biased gene loss from one of the subgenomes shaped the gnathostome genome by giving rise to remarkably conserved microchromosomes. Thus, our reconstructions reveal the major evolutionary events and offer new insights into the origin and evolution of vertebrate genomes.


Assuntos
Cromossomos/genética , Evolução Molecular , Genoma/genética , Modelos Genéticos , Vertebrados/genética , Animais , Variação Genética , Humanos , Lampreias/genética , Filogenia , Poliploidia , Análise de Sequência de DNA , Tubarões/genética , Sintenia , Vertebrados/classificação
6.
Commun Biol ; 4(1): 274, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33654266

RESUMO

Macular Telangiectasia Type 2 (MacTel) is a rare degenerative retinal disease with complex genetic architecture. We performed a genome-wide association study on 1,067 MacTel patients and 3,799 controls, which identified eight novel genome-wide significant loci (p < 5 × 10-8), and confirmed all three previously reported loci. Using MAGMA, eQTL and transcriptome-wide association analysis, we prioritised 48 genes implicated in serine-glycine biosynthesis, metabolite transport, and retinal vasculature and thickness. Mendelian randomization indicated a likely causative role of serine (FDR = 3.9 × 10-47) and glycine depletion (FDR = 0.006) as well as alanine abundance (FDR = 0.009). Polygenic risk scoring achieved an accuracy of 0.74 and was associated in UKBiobank with retinal damage (p = 0.009). This represents the largest genetic study on MacTel to date and further highlights genetically-induced systemic and tissue-specific metabolic dysregulation in MacTel patients, which impinges on retinal health.


Assuntos
Metabolismo Energético/genética , Polimorfismo de Nucleotídeo Único , Retina/metabolismo , Telangiectasia Retiniana/genética , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Loci Gênicos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Análise da Randomização Mendeliana , Pessoa de Meia-Idade , Fenótipo , Locos de Características Quantitativas , Telangiectasia Retiniana/diagnóstico , Telangiectasia Retiniana/metabolismo , Medição de Risco , Fatores de Risco , Transcriptoma
7.
Sci Adv ; 7(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33523858

RESUMO

The rules underlying the structure of antigen receptor repertoires are not yet fully defined, despite their enormous importance for the understanding of adaptive immunity. With current technology, the large antigen receptor repertoires of mice and humans cannot be comprehensively studied. To circumvent the problems associated with incomplete sampling, we have studied the immunogenetic features of one of the smallest known vertebrates, the cyprinid fish Paedocypris sp. "Singkep" ("minifish"). Despite its small size, minifish has the key genetic facilities characterizing the principal vertebrate lymphocyte lineages. As described for mammals, the frequency distributions of immunoglobulin and T cell receptor clonotypes exhibit the features of fractal systems, demonstrating that self-similarity is a fundamental property of antigen receptor repertoires of vertebrates, irrespective of body size. Hence, minifish achieve immunocompetence via a few thousand lymphocytes organized in robust scale-free networks, thereby ensuring immune reactivity even when cells are lost or clone sizes fluctuate during immune responses.


Assuntos
Receptores de Antígenos de Linfócitos T , Vertebrados , Imunidade Adaptativa , Animais , Peixes , Mamíferos , Receptores de Antígenos de Linfócitos T/genética
9.
Mol Ecol Resour ; 20(6): 1748-1760, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32725950

RESUMO

Horseshoe crabs, represented by only four extant species, have existed for around 500 million years. However, their existence is now under threat because of anthropogenic activities. The availability of genomic resources for these species will be valuable in planning appropriate conservation measures. Whole-genome sequences are currently available for three species. In this study, we have generated a chromosome-level genome assembly of the fourth species, the Asian coastal horseshoe crab (Tachypleus gigas; genome size 2.0 Gb). The genome assembly has a scaffold N50 value of 140 Mb with ~97% of the assembly mapped to 14 scaffolds representing 14 chromosomes of T. gigas. In addition, we have generated the complete mitochondrial genome sequence and deep-coverage transcriptome assemblies for four tissues. A total of 26,159 protein-coding genes were predicted in the genome. The T. gigas genome contains five Hox clusters similar to the mangrove horseshoe crab (Carcinoscorpius rotundicauda), suggesting that the common ancestor of horseshoe crabs already possessed five Hox clusters. Phylogenomic and divergence time analysis suggested that the American and Asian horseshoe crab lineages shared a common ancestor around the Silurian period (~436 Ma). Comparison of the T. gigas genome with those of other horseshoe crab species with chromosome-level assemblies provided insights into the chromosomal rearrangement events that occurred during the emergence of these species. The genomic resources of T. gigas will be useful for understanding their genetic diversity and population structure and would help in designing strategies for managing and conserving their stocks across Asia.


Assuntos
Genoma Mitocondrial , Caranguejos Ferradura , Animais , Ásia , Cromossomos , Genômica , Caranguejos Ferradura/genética , Filogenia
10.
Nat Commun ; 11(1): 2322, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385269

RESUMO

The evolutionary history of horseshoe crabs, spanning approximately 500 million years, is characterized by remarkable morphological stasis and a low species diversity with only four extant species. Here we report a chromosome-level genome assembly for the mangrove horseshoe crab (Carcinoscorpius rotundicauda) using PacBio reads and Hi-C data. The assembly spans 1.67 Gb with contig N50 of 7.8 Mb and 98% of the genome assigned to 16 chromosomes. The genome contains five Hox clusters with 34 Hox genes, the highest number reported in any invertebrate. Detailed analysis of the genome provides evidence that suggests three rounds of whole-genome duplication (WGD), raising questions about the relationship between WGD and species radiation. Several gene families, particularly those involved in innate immunity, have undergone extensive tandem duplication. These expanded gene families may be important components of the innate immune system of horseshoe crabs, whose amebocyte lysate is a sensitive agent for detecting endotoxin contamination.


Assuntos
Genoma/genética , Caranguejos Ferradura/genética , Animais , Evolução Molecular , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Família Multigênica/genética , Filogenia
11.
Sci Rep ; 9(1): 17791, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31780694

RESUMO

Bovine tuberculosis (BTB) caused by Mycobacterium bovis remains a major problem in both the developed and developing countries. Control of BTB in the UK is carried out by test and slaughter of infected animals, based primarily on the tuberculin skin test (PPD). Vaccination with the attenuated strain of the M. bovis pathogen, BCG, is not used to control bovine tuberculosis in cattle at present, due to its variable efficacy and because it interferes with the PPD test. Diagnostic tests capable of Differentiating Infected from Vaccinated Animals (DIVA) have been developed that detect immune responses to M. bovis antigens absent in BCG; but these are too expensive and insufficiently sensitive to be used for BTB control worldwide. To address these problems we aimed to generate a synergistic vaccine and diagnostic approach that would permit the vaccination of cattle without interfering with the conventional PPD-based surveillance. The approach was to widen the pool of M. bovis antigens that could be used as DIVA targets, by identifying antigenic proteins that could be deleted from BCG without affecting the persistence and protective efficacy of the vaccine in cattle. Using transposon mutagenesis we identified genes that were essential and those that were non-essential for persistence in bovine lymph nodes. We then inactivated selected immunogenic, but non-essential genes in BCG Danish to create a diagnostic-compatible triple knock-out ΔBCG TK strain. The protective efficacy of the ΔBCG TK was tested in guinea pigs experimentally infected with M. bovis by aerosol and found to be equivalent to wild-type BCG. A complementary diagnostic skin test was developed with the antigenic proteins encoded by the deleted genes which did not cross-react in vaccinated or in uninfected guinea pigs. This study demonstrates the functionality of a new and improved BCG strain which retains its protective efficacy but is diagnostically compatible with a novel DIVA skin test that could be implemented in control programmes.


Assuntos
Vacina BCG/imunologia , Mycobacterium bovis/imunologia , Tuberculose Bovina/diagnóstico , Tuberculose/diagnóstico , Tuberculose/veterinária , Animais , Vacina BCG/genética , Bovinos , Reações Cruzadas , Técnicas de Inativação de Genes , Cobaias , Macrófagos/metabolismo , Macrófagos/microbiologia , Mycobacterium bovis/genética , Transdução Genética , Tuberculina/genética , Tuberculina/imunologia , Teste Tuberculínico , Tuberculose/microbiologia , Tuberculose Bovina/microbiologia , Vacinação , Vacinas Atenuadas/imunologia
12.
BMC Genomics ; 20(1): 431, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138110

RESUMO

BACKGROUND: BCG is the most widely used vaccine of all time and remains the only licensed vaccine for use against tuberculosis in humans. BCG also protects other species such as cattle against tuberculosis, but due to its incompatibility with current tuberculin testing regimens remains unlicensed. BCG's efficacy relates to its ability to persist in the host for weeks, months or even years after vaccination. It is unclear to what degree this ability to resist the host's immune system is maintained by a dynamic interaction between the vaccine strain and its host as is the case for pathogenic mycobacteria. RESULTS: To investigate this question, we constructed transposon mutant libraries in both BCG Pasteur and BCG Danish strains and inoculated them into bovine lymph nodes. Cattle are well suited to such an assay, as they are naturally susceptible to tuberculosis and are one of the few animal species for which a BCG vaccination program has been proposed. After three weeks, the BCG were recovered and the input and output libraries compared to identify mutants with in vivo fitness defects. Less than 10% of the mutated genes were identified as affecting in vivo fitness, they included genes encoding known mycobacterial virulence functions such as mycobactin synthesis, sugar transport, reductive sulphate assimilation, PDIM synthesis and cholesterol metabolism. Many other attenuating genes had not previously been recognised as having a virulence phenotype. To test these genes, we generated and characterised three knockout mutants that were predicted by transposon mutagenesis to be attenuating in vivo: pyruvate carboxylase, a hypothetical protein (BCG_1063), and a putative cyclopropane-fatty-acyl-phospholipid synthase. The knockout strains survived as well as wild type during in vitro culture and in bovine macrophages, yet demonstrated marked attenuation during passage in bovine lymph nodes confirming that they were indeed involved in persistence of BCG in the host. CONCLUSION: These data show that BCG is far from passive during its interaction with the host, rather it continues to employ its remaining virulence factors, to interact with the host's innate immune system to allow it to persist, a property that is important for its protective efficacy.


Assuntos
Elementos de DNA Transponíveis , Mycobacterium bovis/genética , Animais , Vacina BCG , Bovinos , Colesterol/metabolismo , Biblioteca Gênica , Genes Bacterianos , Aptidão Genética , Mycobacterium bovis/metabolismo , Oxazóis , Açúcares/metabolismo , Sulfatos/metabolismo , Tuberculose Bovina/microbiologia
13.
Proc Natl Acad Sci U S A ; 114(34): 9146-9151, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28784804

RESUMO

ParaHox genes (Gsx, Pdx, and Cdx) are an ancient family of developmental genes closely related to the Hox genes. They play critical roles in the patterning of brain and gut. The basal chordate, amphioxus, contains a single ParaHox cluster comprising one member of each family, whereas nonteleost jawed vertebrates contain four ParaHox genomic loci with six or seven ParaHox genes. Teleosts, which have experienced an additional whole-genome duplication, contain six ParaHox genomic loci with six ParaHox genes. Jawless vertebrates, represented by lampreys and hagfish, are the most ancient group of vertebrates and are crucial for understanding the origin and evolution of vertebrate gene families. We have previously shown that lampreys contain six Hox gene loci. Here we report that lampreys contain only two ParaHox gene clusters (designated as α- and ß-clusters) bearing five ParaHox genes (Gsxα, Pdxα, Cdxα, Gsxß, and Cdxß). The order and orientation of the three genes in the α-cluster are identical to that of the single cluster in amphioxus. However, the orientation of Gsxß in the ß-cluster is inverted. Interestingly, Gsxß is expressed in the eye, unlike its homologs in jawed vertebrates, which are expressed mainly in the brain. The lamprey Pdxα is expressed in the pancreas similar to jawed vertebrate Pdx genes, indicating that the pancreatic expression of Pdx was acquired before the divergence of jawless and jawed vertebrate lineages. It is likely that the lamprey Pdxα plays a crucial role in pancreas specification and insulin production similar to the Pdx of jawed vertebrates.


Assuntos
Genes Homeobox/genética , Lampreias/genética , Família Multigênica , Vertebrados/genética , Sequência de Aminoácidos , Animais , Evolução Molecular , Proteínas de Peixes/genética , Perfilação da Expressão Gênica/métodos , Proteínas de Homeodomínio/classificação , Proteínas de Homeodomínio/genética , Filogenia , Homologia de Sequência de Aminoácidos , Vertebrados/classificação
14.
Sci Rep ; 7(1): 1108, 2017 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-28439121

RESUMO

Microbial remediation of oil polluted habitats remains one of the foremost methods for restoration of petroleum hydrocarbon contaminated environments. The development of effective bioremediation strategies however, require an extensive understanding of the resident microbiome of these habitats. Recent developments such as high-throughput sequencing has greatly facilitated the advancement of microbial ecological studies in oil polluted habitats. However, effective interpretation of biological characteristics from these large datasets remain a considerable challenge. In this study, we have implemented recently developed bioinformatic tools for analyzing 65 16S rRNA datasets from 12 diverse hydrocarbon polluted habitats to decipher metagenomic characteristics of the resident bacterial communities. Using metagenomes predicted from 16S rRNA gene sequences through PICRUSt, we have comprehensively described phylogenetic and functional compositions of these habitats and additionally inferred a multitude of metagenomic features including 255 taxa and 414 functional modules which can be used as biomarkers for effective distinction between the 12 oil polluted sites. Additionally, we show that significantly over-represented taxa often contribute to either or both, hydrocarbon degradation and additional important functions. Our findings reveal significant differences between hydrocarbon contaminated sites and establishes the importance of endemic factors in addition to petroleum hydrocarbons as driving factors for sculpting hydrocarbon contaminated bacteriomes.


Assuntos
Bactérias/efeitos dos fármacos , Biota/efeitos dos fármacos , Biologia Computacional/métodos , Microbiologia Ambiental , Poluentes Ambientais/metabolismo , Metagenômica/métodos , Petróleo/metabolismo , Bactérias/classificação , Análise por Conglomerados , DNA Ribossômico/química , DNA Ribossômico/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...