Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(29): 11997-12005, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38991147

RESUMO

Leptospirosis is a re-emerging infectious disease that presents a diagnostic enigma for clinicians with frequent misdiagnosis due to lack of rapid and accurate diagnostic tests, as the current methods are encumbered by inherent limitations. The development of a diagnostic sensor with a sample-in-result-out capability is pivotal for prompt diagnosis. Herein, we developed a microfluidic paper-based analytical device (spin-µPAD) featuring a sample-in-result-out fashion for the detection of Leptospira specific urinary biomarker, sph2 sphingomyelinase, crucial for noninvasive point-of-care testing. Fabrication of paper devices involved precise photolithography techniques, ensuring a high degree of reproducibility and replicability. By optimizing the device's configuration and protein components, a remarkable sensitivity and specificity was achieved for detecting leptospiral sph2 in urine, even at low concentrations down to 1.5 fg/mL, with an assay time of 15 min. Further, the spin-µPAD was validated with 20 clinical samples, suspected of leptospirosis including other febrile illnesses, and compared with gold standard microscopic agglutination test, culture, Lepto IgM ELISA, darkfield microscopy, and Leptocheck WB spot test. In contrast to commercial diagnostic tools, the spin-µPAD was noninvasive, rapid, easy to use, specific, sensitive, and cost-effective. The results highlight the potential of this innovative spin-µPAD for an efficient and dependable approach to noninvasive leptospirosis diagnosis, addressing critical needs in the realms of public health and clinical settings.


Assuntos
Leptospira , Leptospirose , Papel , Leptospirose/diagnóstico , Leptospirose/urina , Humanos , Leptospira/isolamento & purificação , Técnicas Analíticas Microfluídicas/instrumentação , Dispositivos Lab-On-A-Chip , Esfingomielina Fosfodiesterase/análise , Esfingomielina Fosfodiesterase/urina , Biomarcadores/urina , Biomarcadores/análise
2.
Anal Chem ; 96(1): 409-418, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38112052

RESUMO

Photothermal biosensing based on nanomaterials has gained increasing attention because of its universality and simplicity. Diagnostics of neglected tropical diseases (NTDs) in low-resource settings are challenging in terms of speed, accuracy, and cost-effectiveness. By exploiting the photothermal property of carbon nanotubes (CNTs), simple thermometric measurements can be used to generate quantitative biochemical readouts. Herein, a photothermal immunosensor for leptospirosis detection based on a CNT-labeled monoclonal antibody is established through the sensitive monitoring of the target biomarker LipL32 with a simple thermometer. Under optimum conditions, a linear range up to 106 pg/mL with a limit of detection (LOD) of 300 fg/mL was obtained. Overall, the proposed immunoassay exhibited good precision, selectivity, and acceptable stability. Clinical patient sample analysis with the photothermal sensor proved the differential diagnosis of leptospirosis along with other febrile illnesses. On the other hand, we have also characterized the photothermal sensor platform with surface morphological and spectral techniques to confirm the robust and successful fabrication of the immunosensor. The fabricated photothermal sensor could be used as a potential diagnostic tool for the early detection of NTDs in patients from resource-limited settings, as it does not require sample pretreatment, sophisticated equipment, or skilled labor. Moreover, the developed photothermal assay follows ASSURED criteria, very crucial for diagnosis in resource-limited settings.


Assuntos
Técnicas Biossensoriais , Leptospirose , Nanotubos de Carbono , Humanos , Animais , Imunoensaio/métodos , Nanotubos de Carbono/química , Técnicas Biossensoriais/métodos , Leptospirose/diagnóstico , Limite de Detecção , Zoonoses , Ouro/química
3.
J Biosci Bioeng ; 130(4): 424-430, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32674981

RESUMO

Leptospirosis is a widespread zoonosis and an emerging public health problem. Leptospirosis symptoms are often confused or misdiagnosed with other febrile illness like malaria, viral hepatitis, influenza, dengue, typhoid, melioidosis, and scrub typhus as the clinical manifestations are almost similar. Therefore, early and accurate diagnosis of leptospirosis is indeed critical for proper and prompt treatment. Herein, we report the development of single-walled carbon nanotubes based immunofluorescence probe (Carbo-Lip) for the detection of leptospirosis at an early phase by utilising major outer membrane protein, LipL32 of Leptospira. The Carbo-Lip probe was fabricated through immuno recognition method with fluorescent dye functionalized LipL32 monoclonal antibodies (mAbs), secondary antibody and Leptospira. Surface characterization studies such as Fourier transform infrared spectroscopy with the attenuated total reflectance, scanning electron microscopy, transmission electron microscopy, Zeta potential, and X-ray photoelectron spectroscopy techniques were used to demonstrate the successful fabrication of Carbo-Lip probe. The sensor probe was capable of detecting the presence of leptospires at a lower concentration of 103/ml, and could detect 102 leptospires in 100 µL of sample within 3 h of the test conditions, and was stable up to 2 weeks. This Carbo-Lip probe was further tested and validated for its capacity to detect Leptospira in clinical samples, which exhibited high selectivity and specificity towards Leptospira even in the presence of malaria and dengue. Our results were consistent with microscopic agglutination test, which is known as gold standard, immunoglobulin M (IgM) enzyme-linked immunoassay (ELISA), IgM spot test, and culture tests for the diagnosis of Leptospira infection.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Imunofluorescência , Corantes Fluorescentes/metabolismo , Leptospirose/diagnóstico , Lipoproteínas/imunologia , Nanotubos de Carbono/química , Corantes Fluorescentes/química , Humanos , Leptospirose/metabolismo
4.
J Am Chem Soc ; 132(41): 14546-53, 2010 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-20873739

RESUMO

In this study, we have successfully developed a facile method for the high-yield fabrication of Au-Pd core-shell heterostructures with an unusual tetrahexahedral (THH) morphology using Au nanocubes as the structure-directing cores. The lattice orientations of the Au nanocubes match those of the Pd shells. Structural analysis establishes that the THH nanocrystals are bounded by high-index {730} facets. A substantial lattice mismatch between Au and Pd, oxidative etching in the presence of chloride and oxygen, the use of cetyltrimethylammonium chloride (CTAC) surfactant, and the reaction temperature (30-60 °C) were identified to be key factors facilitating the formation of the THH core-shell nanocrystals. Intermediate products have also been examined to follow the growth process. By selecting cubic gold cores with sizes of 30-70 nm and varying the volume of the gold core solution used, THH Au-Pd core-shell nanocrystals with continuously adjustable sizes from 56 to 124 nm can be readily obtained. Their UV-vis spectra display progressive red-shifted bands. Interestingly, novel concave octahedral and octahedral Au-Pd core-shell nanocrystals can be prepared by lowering the reaction temperature and prolonging the reaction time. The concave octahedra show depressions on all the {111} faces. Electrocatalytic activity of the three Au-Pd core-shell structures for the oxidation of ethanol has been investigated. The THH nanocrystals with entirely high-index {730} facets were found to exhibit the best electrocatalytic activity. These size-tunable THH Au-Pd core-shell nanocrystals may be valuable for catalyzing other organic reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...