Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37834408

RESUMO

The mTOR signaling pathway plays a pivotal and intricate role in the pathogenesis of glioblastoma, driving tumorigenesis and proliferation. Mutations or deletions in the PTEN gene constitutively activate the mTOR pathway by expressing growth factors EGF and PDGF, which activate their respective receptor pathways (e.g., EGFR and PDGFR). The convergence of signaling pathways, such as the PI3K-AKT pathway, intensifies the effect of mTOR activity. The inhibition of mTOR has the potential to disrupt diverse oncogenic processes and improve patient outcomes. However, the complexity of the mTOR signaling, off-target effects, cytotoxicity, suboptimal pharmacokinetics, and drug resistance of the mTOR inhibitors pose ongoing challenges in effectively targeting glioblastoma. Identifying innovative treatment strategies to address these challenges is vital for advancing the field of glioblastoma therapeutics. This review discusses the potential targets of mTOR signaling and the strategies of target-specific mTOR inhibitor development, optimized drug delivery system, and the implementation of personalized treatment approaches to mitigate the complications of mTOR inhibitors. The exploration of precise mTOR-targeted therapies ultimately offers elevated therapeutic outcomes and the development of more effective strategies to combat the deadliest form of adult brain cancer and transform the landscape of glioblastoma therapy.


Assuntos
Glioblastoma , Humanos , Glioblastoma/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de MTOR , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo
2.
J Cancer Res Ther ; 19(5): 1075-1078, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37787266

RESUMO

Primary signet ring cell carcinoma (PSRCC) of the prostate is an extremely rare variant of prostatic adenocarcinoma. A PubMed search of the English language literature from January 2000 to June 2020 using the keywords "signet ring cell carcinoma" and "prostate," identified 20 cases of PSRCC of the prostate. On the basis of the combined data from this study and the literature review, 21 such patients were evaluated for clinical characteristics, histologic diagnoses, special and immunohistochemical staining, and treatment. The mean age at the diagnosis was 68.47 years (range 50-85 years). The prostate-specific antigen (PSA) levels varied from 0.19 to 6658 ng/mL, with a mean of 509.15 ng/mL. Most (50%) presented with Stage 3 cancer. The most common Gleason grade group was 5 (Gleason score 9 to 10), seen in 61.5%. The extent of signet ring cell involvement of the specimen when reported was documented as more than 20% of the tumor-containing signet ring cells, with a range of 25%-90%. For pathologic diagnosis, the most common special stains performed were periodic acid-Schiff and Alcian blue, and among the immunohistochemical stains, the most common were PSA, CK20, and prostate-specific acid phosphatase. A detailed clinicoradiological and pathological workup is essential to rule out primary from other common sites, in view of its grave prognosis and lack of an established treatment protocol.


Assuntos
Carcinoma de Células em Anel de Sinete , Neoplasias da Próstata , Masculino , Humanos , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Próstata/patologia , Antígeno Prostático Específico , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/patologia , Carcinoma de Células em Anel de Sinete/diagnóstico , Carcinoma de Células em Anel de Sinete/patologia , Pelve/patologia
3.
Biomedicines ; 11(10)2023 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-37892995

RESUMO

Conventional and cancer immunotherapies encompass diverse strategies to address various cancer types and stages. However, combining these approaches often encounters limitations such as non-specific targeting, resistance development, and high toxicity, leading to suboptimal outcomes in many cancers. The tumor microenvironment (TME) is orchestrated by intricate interactions between immune and non-immune cells dictating tumor progression. An innovative avenue in cancer therapy involves leveraging small molecules to influence a spectrum of resistant cell populations within the TME. Recent discoveries have unveiled a phenotypically diverse cohort of innate-like T (ILT) cells and tumor hybrid cells (HCs) exhibiting novel characteristics, including augmented proliferation, migration, resistance to exhaustion, evasion of immunosurveillance, reduced apoptosis, drug resistance, and heightened metastasis frequency. Leveraging small-molecule immunomodulators to target these immune players presents an exciting frontier in developing novel tumor immunotherapies. Moreover, combining small molecule modulators with immunotherapy can synergistically enhance the inhibitory impact on tumor progression by empowering the immune system to meticulously fine-tune responses within the TME, bolstering its capacity to recognize and eliminate cancer cells. This review outlines strategies involving small molecules that modify immune cells within the TME, potentially revolutionizing therapeutic interventions and enhancing the anti-tumor response.

4.
iScience ; 26(5): 106628, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37192971

RESUMO

This study was undertaken to investigate the role of CD4+FoxP3+ regulatory T cells (Tregs) in regulating neuroinflammation during viral Ag-challenge and re-challenge. CD8+ lymphocytes persisting within tissues are designated tissue-resident memory T cells (TRM), within brain: bTRM. Reactivation of bTRM with T cell epitope peptides generates rapid antiviral recall, but repeated stimulation leads to cumulative dysregulation of microglial activation, proliferation, and prolonged neurotoxic mediator production. Here, we show Tregs were recruited into murine brains following prime-CNS boost, but displayed altered phenotypes following repeated Ag-challenge. In response to repeated Ag, brain Tregs (bTregs) displayed inefficient immunosuppressive capacity, along with reduced expression of suppression of tumorigenicity 2 (ST2) and amphiregulin (Areg). Ex vivo Areg treatment revealed reduced production of neurotoxic mediators such as iNOS, IL-6, and IL-1ß, and decreased microglial activation and proliferation. Taken together, these data indicate bTregs display an unstable phenotype and fail to control reactive gliosis in response to repeated Ag-challenge.

5.
Brain Sci ; 11(11)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34827481

RESUMO

The role of select pro- and anti-inflammatory mediators in driving microglial cell polarization into classically (M1), or alternatively, (M2) activated states, as well as the subsequent differential responses of these induced phenotypes, was examined. Expression of PD-L1, MHC-II, MHC-I, arginase 1 (Arg-1), and inducible nitric oxide synthase (iNOS) was assessed using multi-color flow cytometry. We observed that both pro- and anti-inflammatory mediators induced PD-L1 expression on non-polarized microglia. Moreover, IFN-γ stimulated significant MHC class I and II expression on these cells. Interestingly, we observed that only IL-4 treatment induced Arg-1 expression, indicating M2 polarization. These M2 cells were refractory to subsequent depolarization and maintained their alternatively activated state. Furthermore, PD-L1 expression was significantly induced on these M2-polarized microglia after treatment with pro-inflammatory mediators, but not anti-inflammatory cytokines. In addition, we observed that only LPS induced iNOS expression in microglial cells, indicating M1 polarization. Furthermore, IFN-γ significantly increased the percentage of M1-polarized microglia expressing iNOS. Surprisingly, when these M1-polarized microglia were treated with either IL-6 or other anti-inflammatory cytokines, they returned to their non-polarized state, as demonstrated by significantly reduced expression of iNOS. Taken together, these results demonstrate differential responses of microglial cells to mediators present in dissimilar microenvironments.

6.
Front Cell Neurosci ; 15: 686340, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34447297

RESUMO

Upon reactivation of quiescent neurotropic viruses antigen (Ag)-specific brain resident-memory CD8+ T-cells (bTRM) may respond to de novo-produced viral Ag through the rapid release of IFN-γ, which drives subsequent interferon-stimulated gene expression in surrounding microglia. Through this mechanism, a small number of adaptive bTRM may amplify responses to viral reactivation leading to an organ-wide innate protective state. Over time, this brain-wide innate immune activation likely has cumulative neurotoxic and neurocognitive consequences. We have previously shown that HIV-1 p24 Ag-specific bTRM persist within the murine brain using a heterologous prime-CNS boost strategy. In response to Ag restimulation, these bTRM display rapid and robust recall responses, which subsequently activate glial cells. In this study, we hypothesized that repeated challenges to viral antigen (Ag) (modeling repeated episodes of viral reactivation) culminate in prolonged reactive gliosis and exacerbated neurotoxicity. To address this question, mice were first immunized with adenovirus vectors expressing the HIV p24 capsid protein, followed by a CNS-boost using Pr55Gag/Env virus-like particles (HIV-VLPs). Following the establishment of the bTRM population [>30 days (d)], prime-CNS boost animals were then subjected to in vivo challenge, as well as re-challenge (at 14 d post-challenge), using the immunodominant HIV-1 AI9 CD8+ T-cell epitope peptide. In these studies, Ag re-challenge resulted in prolonged expression of microglial activation markers and an increased proliferative response, longer than the challenge group. This continued expression of MHCII and PD-L1 (activation markers), as well as Ki67 (proliferative marker), was observed at 7, 14, and 30 days post-AI9 re-challenge. Additionally, in vivo re-challenge resulted in continued production of inducible nitric oxide synthase (iNOS) with elevated levels observed at 7, 14 and 30 days post re-challenge. Interestingly, iNOS expression was significantly lower among challenged animals when compared to re-challenged groups. Furthermore, in vivo specific Ag re-challenge produced lower levels of arginase (Arg)-1 when compared with the challenged group. Taken together, these results indicate that repeated Ag-specific stimulation of adaptive immune responses leads to cumulative dysregulated microglial cell activation.

7.
Glia ; 69(4): 858-871, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33128485

RESUMO

Microglial cells are the main reservoir for HIV-1 within the brain and potential exists for negative immune checkpoint blockade therapies to purge this viral reservoir. Here, we investigated cytolytic responses of CD8+ T lymphocytes against microglia loaded with peptide epitopes. Initially, flow cytometric analysis demonstrated efficient killing of HIV-1 p24 AI9 or YI9 peptide-loaded splenocytes in MHC-matched recipients. Cytolytic killing of microglia was first demonstrated using ovalbumin (OVA) as a model antigen for in vitro cytotoxic T lymphocyte (CTL) assays. Peptide-loaded primary microglia obtained from programmed death ligand (PD-L) 1 knockout (KO) animals showed significantly more killing than cells from wild-type (WT) animals when co-cultured with activated CD8+ T-cells isolated from rAd5-OVA primed animals. Moreover, when peptide loaded-microglial cells from WT animals were treated with neutralizing α-PD-L1 Ab, significantly more killing was observed compared to either untreated or IgG isotype-treated cells. Most importantly, significantly increased in vivo killing of HIV-1 p24 YI9 peptide-loaded microglia from PD-L1 KO animals, as well as AI9 peptide-loaded BALB/c microglial cells treated with α-PD-L1, was observed within brains of rAd5-p24 primed-CNS boosted C57BL/6 or BALB/c mice, respectively. Finally, ex vivo responses of brain CD8+ T-cells in response to AI9 stimulation showed significantly increased IFN-γ and IL-2 production when treated with α-PD-1 Abs. Greater proliferation of CD8+ T-cells from the brain was also observed following blockade. Taken together, these studies demonstrate that PD-L1 induction on microglia restrains CTL responses and indicate that immune checkpoint blockade targeting this pathway may be beneficial in clearing viral brain reservoirs.


Assuntos
Antígeno B7-H1 , Linfócitos T Citotóxicos , Animais , Linfócitos T CD8-Positivos , Inibidores de Checkpoint Imunológico , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microglia , Peptídeos/farmacologia , Receptor de Morte Celular Programada 1
8.
iScience ; 20: 512-526, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31655062

RESUMO

HIV-associated neurocognitive disorders (HAND) persist even during effective combination antiretroviral therapy (cART). Although the cause of HAND is unknown, studies link chronic immune activation, neuroinflammation, and cerebrospinal fluid viral escape to disease progression. In this study, we tested the hypothesis that specific, recall immune responses from brain-resident memory T cells (bTRM) could activate glia and induce neurotoxic mediators. To address this question, we developed a heterologous prime-central nervous system (CNS) boost strategy in mice. We observed that the murine brain became populated with long-lived CD8+ bTRM, some being specific for an immunodominant Gag epitope. Recall stimulation using HIV-1 AI9 peptide administered in vivo resulted in microglia displaying elevated levels of major histocompatibility complex class II and programmed death-ligand 1, and demonstrating tissue-wide reactive gliosis. Immunostaining further confirmed this glial activation. Taken together, these results indicate that specific, adaptive recall responses from bTRM can induce reactive gliosis and production of neurotoxic mediators.

9.
Pain Res Manag ; 2019: 1260353, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31354896

RESUMO

The most common neurological complication in patients receiving successful combination antiretroviral therapy (cART) is peripheral neuropathic pain. Data show that distal symmetric polyneuropathy (DSP) also develops along with murine acquired immunodeficiency syndrome (MAIDS) after infection with the LP-BM5 murine retrovirus mixture. Links between cannabinoid receptor 2 (CB2R) and peripheral neuropathy have been established in animal models using nerve transection, chemotherapy-induced pain, and various other stimuli. Diverse types of neuropathic pain respond differently to standard drug intervention, and little is currently known regarding the effects of modulation through CB2Rs. In this study, we evaluated whether treatment with the exogenous synthetic CB2R agonists JWH015, JWH133, Gp1a, and HU308 controls neuropathic pain and neuroinflammation in animals with chronic retroviral infection. Hind-paw mechanical hypersensitivity in CB2R agonist-treated versus untreated animals was assessed using the MouseMet electronic von Frey system. Multicolor flow cytometry was used to determine the effects of CB2R agonists on macrophage activation and T-lymphocyte infiltration into dorsal root ganglia (DRG) and lumbar spinal cord (LSC). Results demonstrated that, following weekly intraperitoneal injections starting at 5 wk p.i., JWH015, JWH133, and Gp1a, but not HU308 (5 mg/kg), significantly ameliorated allodynia when assessed 2 h after ligand injection. However, these same agonists (2x/wk) did not display antiallodynic effects when mechanical sensitivity was assessed 24 h after ligand injection. Infection-induced macrophage activation and T-cell infiltration into the DRG and LSC were observed at 12 wk p.i., but this neuroinflammation was not affected by treatment with any CB2R agonist. Activation of JAK/STAT3 has been shown to contribute to development of neuropathic pain in the LSC and pretreatment of primary murine microglia (2 h) with JWH015-, JWH133-, or Gp1a-blocked IFN-gamma-induced phosphorylation of STAT1 and STAT3. Taken together, these data show that CB2R agonists demonstrate acute, but not long-term, antiallodynic effects on retrovirus infection-induced neuropathic pain.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Neuralgia/virologia , Infecções por Retroviridae/complicações , Animais , Canabinoides/farmacologia , Modelos Animais de Doenças , Humanos , Hiperalgesia/virologia , Indenos/farmacologia , Indóis/farmacologia , Masculino , Camundongos , Pirazóis/farmacologia , Retroviridae
11.
Viral Immunol ; 32(1): 48-54, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30230418

RESUMO

Activated CD8+ lymphocytes infiltrate the brain in response to many viral infections; where some remain stationed long term as memory T cells. Brain-resident memory T cells (bTRM) are positioned to impart immediate defense against recurrent or reactivated infection. The cytokine and chemokine milieu present within a tissue is critical for TRM generation and retention; and reciprocal interactions exist between brain-resident glia and bTRM. High concentrations of TGF-ß are found within brain and this cytokine has been shown to induce CD103 (integrin αeß7) expression. The majority of T cells persisting within brain express CD103, which aids in retention through interaction with E-cadherin. Likewise, cytokines produced by T cells also modulate microglia. The anti-inflammatory cytokine IL-4 has been shown to preferentially polarize microglial cells toward an M2 phenotype, with a corresponding increase in E-cadherin expression. These findings demonstrate that the brain microenvironment, both during and following inflammation, prominently contributes to the role of CD103 in T cell persistence. Further evidence shows that microglia, and astrocytes, upregulate programmed death (PD) ligand 1 during neuroinflammation, likely to limit neuropathology, and the PD-1: PD-L1 pathway also aids in bTRM generation and retention. Upon reactivation of quiescent neurotropic viruses, bTRM may respond to small amounts of de novo-produced viral antigen by rapidly releasing IFN-γ, resulting in interferon-stimulated gene expression in surrounding glia, thereby amplifying activation of a small number of adaptive immune cells into an organ-wide innate antiviral response. While advantageous from an antiviral perspective; over time, recall response-driven, organ-wide innate immune activation likely has cumulative neurotoxic and neurocognitive consequences.


Assuntos
Encéfalo/imunologia , Encéfalo/virologia , Linfócitos T/imunologia , Viroses/imunologia , Animais , Antígenos CD/genética , Antígenos CD/imunologia , Linfócitos T CD8-Positivos/imunologia , Caderinas/genética , Caderinas/imunologia , Citocinas/imunologia , Humanos , Memória Imunológica , Cadeias alfa de Integrinas/genética , Cadeias alfa de Integrinas/imunologia , Interleucina-4/imunologia , Camundongos , Microglia/imunologia , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Fator de Crescimento Transformador beta/imunologia
12.
Immun Inflamm Dis ; 6(2): 332-344, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29602245

RESUMO

INTRODUCTION: Previous work from our laboratory has demonstrated in vivo persistence of CD103+ CD69+ brain resident memory CD8+ T-cells (bTRM ) following viral infection, and that the PD-1: PD-L1 pathway promotes development of these TRM cells within the brain. Although glial cells express low basal levels of PD-L1, its expression is upregulated upon IFN-γ-treatment, and they have been shown to modulate antiviral T-cell effector responses through the PD-1: PD-L1 pathway. METHODS: We performed flow cytometric analysis of cells from co-cultures of mixed glia and CD8+ T-cells obtained from wild type mice to investigate the role of glial cells in the development of bTRM . RESULTS: In this study, we show that interactions between reactive glia and anti-CD3 Ab-stimulated CD8+ T-cells promote development of CD103+ CD69+ CD8+ T-cells through engagement of the PD-1: PD-L1 pathway. These studies used co-cultures of primary murine glial cells obtained from WT animals along with CD8+ T-cells obtained from either WT or PD-1 KO mice. We found that αCD3 Ab-stimulated CD8+ T-cells from WT animals increased expression of CD103 and CD69 when co-cultured with primary murine glial cells. In contrast, significantly reduced expression of CD103 and CD69 was observed using CD8+ T-cells from PD-1 KO mice. We also observed that reactive glia promoted high levels of CD127, a marker of memory precursor effector cells (MPEC), on CD69+ CD8+ T-cells, which promotes development of TRM cells. Interestingly, results obtained using T-cells from PD-1 KO animals showed significantly reduced expression of CD127 on CD69+ CD8+ cells. Additionally, blocking of glial PD-L1 resulted in decreased expression of CD103, along with reduced CD127 on CD69+ CD8+ T-cells. CONCLUSIONS: Taken together, these results demonstrate a role for activated glia in promoting development of bTRM through the PD-1: PD-L1 pathway.


Assuntos
Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , Neuroglia/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Antígeno B7-H1/imunologia , Encéfalo/citologia , Encéfalo/imunologia , Linfócitos T CD8-Positivos/metabolismo , Células Cultivadas , Viroses do Sistema Nervoso Central/imunologia , Viroses do Sistema Nervoso Central/virologia , Técnicas de Cocultura , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Humanos , Cadeias alfa de Integrinas/metabolismo , Lectinas Tipo C/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Muromegalovirus/imunologia , Neuroglia/metabolismo , Cultura Primária de Células , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Transdução de Sinais/imunologia
13.
J Neuroinflammation ; 15(1): 66, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29506535

RESUMO

BACKGROUND: Peripheral neuropathy is currently the most common neurological complication in HIV-infected individuals, occurring in 35-50% of patients undergoing combination anti-retroviral therapy. Data have shown that distal symmetric polyneuropathy develops in mice by 6 weeks following infection with the LP-BM5 retrovirus mixture. Previous work from our laboratory has demonstrated that glial cells modulate antiviral T-cell effector responses through the programmed death (PD)-1: PD-L1 pathway, thereby limiting the deleterious consequences of unrestrained neuroinflammation. METHODS: Using the MouseMet electronic von Frey system, we assessed hind-paw mechanical hypersensitivity in LP-BM5-infected wild-type (WT) and PD-1 KO animals. Using multi-color flow cytometry, we quantitatively assessed cellular infiltration and microglial activation. Using real-time RT-PCR, we assessed viral load, expression of IFN-γ, iNOS, and MHC class II. Using western blotting, we measured protein nitrosylation within the lumbar spinal cord (LSC) and dorsal root ganglion (DRG). Histochemical staining was performed to analyze the presence of CD3, ionized calcium binding adaptor molecule (Iba)-1, MHCII, nitrotyrosine, isolectin B4 (IB4) binding, and neurofilament 200 (NF200). Statistical analyses were carried out using graphpad prism. RESULTS: Hind-paw mechanical hypersensitivity observed in LP-BM5-infected animals was associated with significantly increased lymphocyte infiltration into the spinal cord and DRG. We also observed elevated expression of IFN-γ (in LSC and DRG) and MHC II (on resident microglia in LSC). We detected elevated levels of 3-nitrotyrosine within the LSC and DRG of LP-BM5-infected animals, an indicator of nitric oxide (NO)-induced protein damage. Moreover, we observed 3-nitrotyrosine in both small (IB4+) and large (NF200+) DRG sensory neurons. Additionally, infected PD-1 KO animals displayed significantly greater mechanical hypersensitivity than WT or uninfected mice at 4 weeks post-infection (p.i.). Accelerated onset of hind-paw hypersensitivity in PD-1 KO animals was associated with significantly increased infiltration of CD4+ and CD8+ T lymphocytes, macrophages, and microglial activation at early time points. Importantly, we also observed elevated levels of 3-nitrotyrosine and iNOS in infected PD-1 KO animals when compared with WT animals. CONCLUSIONS: Results reported here connect peripheral immune cell infiltration and reactive gliosis with nitrosative damage. These data may help elucidate how retroviral infection-induced neuroinflammatory networks contribute to nerve damage and neuropathic pain.


Assuntos
Neuralgia/etiologia , Infecções por Retroviridae/complicações , Animais , Antígenos CD/metabolismo , Modelos Animais de Doenças , Gânglios Espinais , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Interferon gama/metabolismo , Leucócitos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuralgia/patologia , Neuralgia/virologia , Óxido Nítrico Sintase Tipo II , Receptor de Morte Celular Programada 1/deficiência , Receptor de Morte Celular Programada 1/genética , RNA Mensageiro , Retroviridae/patogenicidade , Medula Espinal/patologia
14.
J Neuroinflammation ; 14(1): 82, 2017 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-28407741

RESUMO

BACKGROUND: Previous work from our laboratory has demonstrated that during acute viral brain infection, glial cells modulate antiviral T cell effector responses through the PD-1: PD-L1 pathway, thereby limiting the deleterious consequences of unrestrained neuroinflammation. Here, we evaluated the PD-1: PD-L1 pathway in development of brain-resident memory T cells (bTRM) following murine cytomegalovirus (MCMV) infection. METHODS: Flow cytometric analysis of immune cells was performed at 7, 14, and 30 days post-infection (dpi) to assess the shift of brain-infiltrating CD8+ T cell populations from short-lived effector cells (SLEC) to memory precursor effector cells (MPEC), as well as generation of bTRMs. RESULTS: In wild-type (WT) animals, we observed a switch in the phenotype of brain-infiltrating CD8+ T cell populations from KLRG1+ CD127- (SLEC) to KLRG1- CD127+ (MPEC) during transition from acute through chronic phases of infection. At 14 and 30 dpi, the majority of CD8+ T cells expressed CD127, a marker of memory cells. In contrast, fewer CD8+ T cells expressed CD127 within brains of infected, PD-L1 knockout (KO) animals. Notably, in WT mice, a large population of CD8+ T cells was phenotyped as CD103+ CD69+, markers of bTRM, and differences were observed in the numbers of these cells when compared to PD-L1 KOs. Immunohistochemical studies revealed that brain-resident CD103+ bTRM cells were localized to the parenchyma. Higher frequencies of CXCR3 were also observed among WT animals in contrast to PD-L1 KOs. CONCLUSIONS: Taken together, our results indicate that bTRMs are present within the CNS following viral infection and the PD-1: PD-L1 pathway plays a role in the generation of this brain-resident population.


Assuntos
Antígeno B7-H1/deficiência , Encéfalo/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Encefalite Viral/metabolismo , Receptor de Morte Celular Programada 1/deficiência , Animais , Encéfalo/imunologia , Linfócitos T CD8-Positivos/imunologia , Encefalite Viral/imunologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Células NIH 3T3 , Transdução de Sinais/fisiologia
15.
Sci Rep ; 7: 41889, 2017 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-28165503

RESUMO

Fcγ receptors (FcγRs) for IgG couple innate and adaptive immunity through activation of effector cells by antigen-antibody complexes. We investigated relative levels of activating and inhibitory FcγRs on brain-resident microglia following murine cytomegalovirus (MCMV) infection. Flow cytometric analysis of microglial cells obtained from infected brain tissue demonstrated that activating FcγRs were expressed maximally at 5 d post-infection (dpi), while the inhibitory receptor (FcγRIIB) remained highly elevated during both acute and chronic phases of infection. The highly induced expression of activating FcγRIV during the acute phase of infection was also noteworthy. Furthermore, in vitro analysis using cultured primary microglia demonstrated the role of interferon (IFN)γ and interleukin (IL)-4 in polarizing these cells towards a M1 or M2 phenotype, respectively. Microglial cell-polarization correlated with maximal expression of either FcγRIV or FcγRIIB following stimulation with IFNγ or IL-4, respectively. Finally, we observed a significant delay in polarization of microglia towards an M2 phenotype in the absence of FcγRs in MCMV-infected Fcer1g and FcgR2b knockout mice. These studies demonstrate that neuro-inflammation following viral infection increases expression of activating FcγRs on M1-polarized microglia. In contrast, expression of the inhibitory FcγRIIB receptor promotes M2-polarization in order to shut-down deleterious immune responses and limit bystander brain damage.


Assuntos
Encéfalo/metabolismo , Infecções por Herpesviridae/metabolismo , Microglia/metabolismo , Receptores de IgG/metabolismo , Células 3T3 , Animais , Encéfalo/citologia , Diferenciação Celular , Células Cultivadas , Feminino , Interferon gama/farmacologia , Interleucina-4/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microglia/citologia , Microglia/efeitos dos fármacos , Muromegalovirus , Receptores de IgG/genética
16.
BMC Ophthalmol ; 16(1): 165, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27655019

RESUMO

BACKGROUND: Discovery of sessile mode of microbial existence (Biofilm state) focussed much interest, during the recent years, on the study of biofilms in many recurring and chronic infections. However, the exact role of microbial biofilms in chronic rhinosinusitis and orbital cellulitis were not elucidated earlier. The purpose of the present study was to look for the adherent property and biofilm producing ability of the clinical isolates in chronic rhinosinusitis and orbital cellulitis, and to look for the effects of antimicrobial agents on these biofilms by colorimetric assay and ultrastructural analysis. METHODS: Organisms were isolated and identified from various clinical samples in patients with chronic sinusitis and orbital cellulitis. Antimicrobial sensitivity testing was carried out by the standard protocol. Biofilms were developed; quantified and antimicrobial drug perfusion through the biofilm model was evaluated by the earlier devised procedure. Electronmicroscopic study of the biofilm was performed by the recommended technique. RESULTS: Of the total of 70 clinical samples processed, 48 i.e. 68.5 % grew bacteria and 13 i.e.(18.6 %) fungi. Staphylococcus aureus (20), S epidermidis (16) and Pseudomonas aeruginosa (6) accounted for the majority of the bacterial isolates. Aspergillus flavus (8), however was the commonest amongst the fungi. A total of 40 bacteria and 8 fungi could be tested for biofilm production. Eighteen (45 %) of the 40 bacterial isolates and 4(50 %) out of the 8 A flavus isolates were found to be biofilm producers. In vitro adherence testing revealed that majority i.e. 16 (88.8 %) of the 18 biofilm positive bacteria were adherent to artificial surfaces. Antimicrobial drug perfusion through the biofilm model was poor. Antimicrobial treatment was totally ineffective against strong biofilm producers, whose electron microscopic picture was quite similar to that observed for biofilm producers without any antimicrobial pre-treatment. CONCLUSIONS: Filamentous fungi, like bacteria were capable of forming biofilms, which could be one of the important virulence factors in determining the pathogenic potential of these organisms in causing chronic rhinosinusitis and orbital cellulitis.

17.
J Neuroinflammation ; 13(1): 114, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-27207308

RESUMO

BACKGROUND: Chemokines produced by reactive glia drive migration of immune cells and previous studies from our laboratory have demonstrated that CD19(+) B cells infiltrate the brain. In this study, in vivo and in vitro experiments investigated the role of reactive glial cells in recruitment and survival of B-lineage cells in response to (murine cytomegalovirus) MCMV infection. METHODS: Flow cytometric analysis was used to assess chemokine receptor expression on brain-infiltrating B cells. Real-time RT-PCR and ELISA were used to measure chemokine levels. Dual-immunohistochemical staining was used to co-localize chemokine production by reactive glia. Primary glial cell cultures and migration assays were used to examine chemokine-mediated recruitment. Astrocyte: B cell co-cultures were used to investigate survival and proliferation. RESULTS: The chemokine receptors CXCR3, CXCR5, CCR5, and CCR7 were detected on CD19(+) cells isolated from the brain during MCMV infection. In particular, CXCR3 was found to be elevated on an increasing number of cells over the time course of infection, and it was the primary chemokine receptor expressed at 60 days post infection Quite different expression kinetics were observed for CXCR5, CCR5, and CCR7, which were elevated on the highest number of cells early during infection and decreased by 14, 30, and 60 days post infection Correspondingly, elevated levels of CXCL9, CXCL10, and CXCL13, as well as CCL5, were found within the brains of infected animals, and only low levels of CCL3 and CCL19 were detected. Differential expression of CXCL9/CXCL10 and CXCL13 between microglia and astrocytes was apparent, and B cells moved towards supernatants from MCMV-infected microglia, but not astrocytes. Pretreatment with neutralizing Abs to CXCL9 and CXCL10 inhibited this migration. In contrast, neutralizing Abs to the ligand of CXCR5 (i.e., CXCL13) did not significantly block chemotaxis. Proliferation of brain-infiltrating B cells was detected at 7 days post infection and persisted through the latest time tested (60 days post infection). Finally, astrocytes produce BAFF (B cell activating factor of the TNF family) and promote proliferation of B cells via cell-to-cell contact. CONCLUSIONS: CXCR3 is the primary chemokine receptor on CD19(+) B cells persisting within the brain, and migration to microglial cell supernatants is mediated through this receptor. Correspondingly, microglial cells produce CXCL9 and CXCL10, but not CXCL13. Reactive astrocytes promote B cell proliferation.


Assuntos
Linfócitos B/patologia , Encéfalo/patologia , Infecções por Herpesviridae/patologia , Muromegalovirus/patogenicidade , Neuroglia/patologia , Análise de Variância , Animais , Animais Recém-Nascidos , Linfócitos B/virologia , Encéfalo/virologia , Sobrevivência Celular , Células Cultivadas , Quimiotaxia/fisiologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Infecções por Herpesviridae/virologia , Leucócitos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/virologia , RNA Mensageiro/metabolismo
18.
Glia ; 63(11): 1982-1996, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26041050

RESUMO

Long-term, persistent central nervous system inflammation is commonly seen following brain infection. Using a murine model of viral encephalitis (murine cytomegalovirus, MCMV) we have previously shown that post-encephalitic brains are maintained in an inflammatory state consisting of glial cell reactivity, retention of brain-infiltrating tissue-resident memory CD8+ T-cells, and long-term persistence of antibody-producing cells of the B-lineage. Here, we report that this neuroinflammation occurs concomitantly with accumulation and retention of immunosuppressive regulatory T-cells (Tregs), and is exacerbated following their ablation. However, the extent to which these Tregs function to control neuroimmune activation following MCMV encephalitis is unknown. In this study, we used Foxp3-diphtheria toxin receptor-GFP (Foxp3-DTR-GFP) transgenic mice, which upon administration of low-dose diphtheria toxin (DTx) results in the specific depletion of Tregs, to investigate their function. We found treatment with DTx during the acute phase of viral brain infection (0-4 dpi) resulted in depletion of Tregs from the brain, exacerbation of encephalitis (i.e., increased presence of CD4+ and CD8+ T-cells), and chronic reactive phenotypes of resident glial cells (i.e., elevated MHC Class II as well as PD-L1 levels, sustained microgliosis, and increased glial fibrillary acidic protein (GFAP) expression on astrocytes) versus untreated, infected animals. This chronic proinflammatory environment was associated with reduced cognitive performance in spatial learning and memory tasks (Barnes Maze) by convalescent animals. These data demonstrate that chronic glial cell activation, unremitting post-encephalitic neuroinflammation, and its associated long-term neurological sequelae in response to viral brain infection are modulated by the immunoregulatory properties of Tregs. GLIA 2015;63:1982-1996.

19.
PLoS One ; 10(12): e0145457, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26720146

RESUMO

Accumulation and retention of regulatory T-cells (Tregs) has been reported within post viral-encephalitic brains, however, the full extent to which these cells modulate neuroinflammation is yet to be elucidated. Here, we used Foxp3-DTR (diphtheria toxin receptor) knock-in transgenic mice, which upon administration of low dose diphtheria toxin (DTx) results in specific deletion of Tregs. We investigated the proliferation status of various immune cell subtypes within inflamed central nervous system (CNS) tissue. Depletion of Tregs resulted in increased proliferation of both CD8+ and CD4+ T-cell subsets within the brain at 14 d post infection (dpi) when compared to Treg-sufficient animals. At 30 dpi, while proliferation of CD8+ T-cells was controlled within brains of both Treg-depleted and undepleted mice, proliferation of CD4+ T-cells remained significantly enhanced with DTx-treatment. Previous studies have demonstrated that Treg numbers within the brain rebound following DTx treatment to even higher numbers than in untreated animals. Despite this rebound, CD8+ and CD4+ T-cells proliferated at a higher rate when compared to that of Treg-sufficient mice, thus maintaining sustained neuroinflammation. Furthermore, at 30 dpi we found the majority of CD8+ T-cells were CD127hi KLRG1- indicating that the cells were long lived memory precursor cells. These cells showed marked elevation of CD103 expression, a marker of tissue resident-memory T-cells (TRM) in the CNS, in untreated animals when compared to DTx-treated animals suggesting that generation of TRM is impaired upon Treg depletion. Moreover, the effector function of TRM as indicated by granzyme B production in response to peptide re-stimulation was found to be more potent in Treg-sufficient animals. Taken together, our findings demonstrate that Tregs limit neuroinflammatory responses to viral infection by controlling cell proliferation and may direct a larger proportion of lymphocytes within the brain to be maintained as TRM cells.


Assuntos
Encéfalo/imunologia , Encéfalo/virologia , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Memória Imunológica , Ativação Linfocitária/imunologia , Muromegalovirus/fisiologia , Linfócitos T Reguladores/imunologia , Antígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células , Citocinas/biossíntese , Granzimas/biossíntese , Humanos , Depleção Linfocítica , Linfócitos T Reguladores/citologia
20.
Indian J Med Res ; 136(3): 483-90, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23041744

RESUMO

BACKGROUND & OBJECTIVES: The discrimination between the Staphylococcus epidermidis colonizing the deep seated indwelling devices and those which are mere commensals has always been a challenge for the clinical microbiologist. This study was aimed to characterize the S. epidermidis isolates obtained from device related infection for their phenotypic and molecular markers of virulence and to see whether these markers can be used to differentiate the pathogenic S. epidermidis from the commensals. METHODS: Fifty five S. epidermidis isolates from various device related infections such as endophthalmitis following intra-ocular lens (IOL) implantation, intravascular (IV) catheter related sepsis and orthopaedic implant infections, were studied for slime production, biotyping, antibiotic sensitivity; and mec A and ica positivity by the recommended procedures. RESULTS: Twenty three (41.8%) isolates were multi-drug resistant, 26 (65.2%) were slime producers, 30 (54.5%) were adherent, 23 (41.8%) possessed the intercellular adhesin (ica) gene, and 28 (50.9%) harboured the mec A gene. Biotypes I and III were the commonest, most members of which were multi- drug resistant. Twenty two (73.3%) of the 30 adherent bacteria were slime producers as opposed to only 4 (16%) of the 25 non-adherent bacteria (P<0.001). A vast majority i.e. 21 (91.3%) of the 23 ica positive organisms were adherent to artificial surfaces in contrast to only 9 (28.1%) of the 32 non-ica positive organisms (P<0.001). Twenty (86.9%) of the 23 ica positive bacteria were slime producers, as opposed to only 6 (18.7%) of the 32 ica negative bacteria (P<0.001). Of the 23 multi-drug resistant isolates, 19 (82.6%) carried the mec A gene. INTERPRETATION & CONCLUSIONS: The present findings showed that ica AB and mec A were the two important virulence markers of S. epidermidis in implant infections and slime was responsible for the sessile mode of attachment on the devices.


Assuntos
Próteses e Implantes/microbiologia , Staphylococcus epidermidis/isolamento & purificação , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Staphylococcus epidermidis/genética , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...