Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-14, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37490072

RESUMO

Snake venom PLA2, a member of the group of hydrolase enzymes, has been recognized as a promising drug target for snake envenomation. In the present study, an attempt was made to identify potential inhibitors of snake venom PLA2 by employing a pharmacophore-based virtual screening, docking, and dynamics approach. A receptor-based pharmacophore model was generated based on the features of the established and bound co-crystal ligand (2-carbamoylmethyl-5-propyl-octahydro-indol-7-yl)-acetic acid in the PLA2 complex. The best pharmacophore model (ADDH) derived, consisted of four features, namely one hydrogen bond acceptor, two hydrogen bond donors, and one hydrophobic region. This common pharmacophore was then used to perform virtual screening against a drug-like diverse database, with due consideration to the Lipinski 'rule of five', so as to obtain a pool of lead molecules. The short-listed lead molecules were then subjected to docking analysis with that of the Daboia russelli viper venom PLA2 followed by a molecular simulation study for a duration of 100 ns. CAP04815700 was chosen as the best compound based on the simulation parameters, which were then taken for MM/PBSA calculation, and it was revealed that it has a similar effective inhibitory potential as that of the crystal ligand. Further, the cluster analysis also revealed the structural significance of the backbone protein after the interaction with CAP04815700. This study will continue to explore its bioactivity in vitro and in vivo.Communicated by Ramaswamy H. Sarma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...