Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 56(61): 8623-8626, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32613975

RESUMO

0-D/2-D hybrids made up of phosphorene quantum dot (PQD)-interspersed few-layered MoS2 nanosheets were demonstrated to be efficient electrocatalysts with remarkable bifunctional electrocatalytic activity for oxygen and hydrogen evolution in an alkaline medium. The excellent performance of the PQD/MoS2 hybrids was attributed to their unique morphology, which facilitated charge transfer, leading to improved HER and OER kinetics.

2.
Nanoscale ; 12(3): 1790-1800, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31895391

RESUMO

Green hydrogen production is a vital requirement of the upcoming hydrogen fuel-based locomotion and economy. Water electrolysis facilitated by electricity derived from renewable sources and direct solar-to-hydrogen conversion centred on photochemical and photoelectrochemical water splitting is a promising pathway for sustainable hydrogen production. All these methods require a highly active noble metal catalyst to make the water-splitting process more energy-efficient and in order to make it economical, metal-free hydrogen evolution catalysts such as graphene nanoplatelets (GNPs) are essential. Herein, we report the effect of a range of functionalizations on the catalytic properties of graphene nanoplatelets (GNPs) for the hydrogen evolution reaction (HER). We also account for the effect of functionalization on the strength of the electrical double layer formation on the surface of functionalized GNPs. It is observed that the catalytic activity and the electrical double layer strength are inversely related to each other. Our first-principles-based density functional theoretical (DFT) modelling unravels the origin of the observed electrocatalytic activity and its trend and the strength of the electrical double layers in terms of free energy changes during the ion absorption/desorption events on the electrode surface. Based on our observations, minimizing the electrical double layer strength is identified as an approach to improve the catalytic performance of the catalysts.

3.
ACS Nano ; 12(11): 11511-11519, 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30362353

RESUMO

Phosphorene has attracted great interest in the rapidly emerging field of two-dimensional layered nanomaterials. Recent studies show promising electrocatalytic activity of few-layered phosphorene sheets toward the oxygen evolution reaction (OER). However, controllable synthesis of mono/few-layered phosphorene nanostructures with a large number of electrocatalytically active sites and exposed surface area is important to achieve significant enhancement in OER activity. Here, a novel strategy for controlled synthesis and in situ surface functionalization of phosphorene quantum dots (PQDs) using a single-step electrochemical exfoliation process is demonstrated. Phosphorene quantum dots functionalized with nitrogen-containing groups (FPQDs) exhibit efficient and stable electrocatalytic activity for OER with an overpotential of 1.66 V @ 10 mA cm-2, a low Tafel slope of 48 mV dec-1, and excellent stability. Further, we observe enhanced electron transfer kinetics for FPQDs toward the Fe2+/Fe3+ redox probe in comparison with pristine PQDs. The results demonstrate the promising potential of phosphorene as technologically viable OER electrodes for water-splitting devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...