Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
3 Biotech ; 13(2): 42, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36643400

RESUMO

Disease outbreaks due to improper culture management, poor water quality, and climate change are major concerns in aquaculture. Most of the aquatic pathogens are opportunistic and any imbalance in the host-pathogen-environment triad will result in a disease outbreak. The indiscriminate use of chemotherapeutics such as antibiotics to prevent diseases in aquaculture will lead to antimicrobial resistance in aquaculture. Hence, the demand for natural microbial strains which can be used as beneficial probiotics and bioaugmentors in fish farming systems has increased to ensure one health in aquaculture. Studies have proved the probiotic and bioremediation potential of several Actinobacterial species that can be applied in aquaculture. Actinobacteria, especially Streptomyces, can be applied in aquaculture for disease prevention, treatment, and bioremediation of organic and inorganic waste in the culture systems. The growth, immunity, and resistance towards aquatic pathogens in cultured organisms also get enhanced through their capability to release potent antimicrobial compounds, bioactive molecules, and novel enzymes. Their broad-spectrum antimicrobial and quorum quenching activity can be well exploited against quorum sensing biofilm forming aquatic pathogens. Even though they impart specific adverse effects like the production of off-flavour compounds, this could be controlled through proper management strategies. This review discusses the applications, challenges, and prospects of Actinobacteria in aquaculture. Research gaps are also highlighted, which may shed light on the existing complexities and should pave the way for their better understanding and utilisation in aquaculture.

2.
J Basic Microbiol ; 61(2): 88-109, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33448079

RESUMO

The global nitrogen cycle is of paramount significance as it affects important processes like primary productivity and decomposition. Nitrification, the oxidation of ammonia to nitrate via nitrite, is a key process in the nitrogen cycle. The knowledge about nitrification has been challenged during the last few decades with inventions like anaerobic ammonia oxidation, ammonia-oxidizing archaea, and recently the complete ammonia oxidation (comammox). The discovery of comammox Nitrospira has made a paradigm shift in nitrification, before which it was considered as a two-step process, mediated by chemolithoautotrophic ammonia oxidizers and nitrite oxidizers. The genome of comammox Nitrospira equipped with molecular machineries for both ammonia and nitrite oxidation. The genus Nitrospira is ubiquitous, comes under phylum Nitrospirae, which comprises six sublineages consisting of canonical nitrite oxidizers and comammox. The single-step nitrification is energetically more feasible; furthermore, the existence of diverse metabolic pathways in Nitrospira is critical for its establishment in various habitats. The present review discusses the taxonomy, ecophysiology, isolation, identification, growth, and metabolic diversity of the genus Nitrospira; compares the genomes of canonical nitrite-oxidizing Nitrospira and comammox Nitrospira, and analyses the differences of Nitrospira with other nitrifying bacteria.


Assuntos
Bactérias/classificação , Fenômenos Fisiológicos Bacterianos , Nitrificação , Amônia/metabolismo , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Ecossistema , Genoma Bacteriano , Redes e Vias Metabólicas , Nitritos/metabolismo , Ciclo do Nitrogênio , Oxirredução , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...