Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 74(18): 5805-5819, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37453132

RESUMO

The circadian clock system acts as an endogenous timing reference that coordinates many metabolic and physiological processes in plants. Previous studies have shown that the application of osmotic stress delays circadian rhythms via 3'-phospho-adenosine 5'-phosphate (PAP), a retrograde signalling metabolite that is produced in response to redox stress within organelles. PAP accumulation leads to the inhibition of exoribonucleases (XRNs), which are responsible for RNA degradation. Interestingly, we are now able to demonstrate that post-transcriptional processing is crucial for the circadian response to osmotic stress. Our data show that osmotic stress increases the stability of specific circadian RNAs, suggesting that RNA metabolism plays a vital role in circadian clock coordination during drought. Inactivation of XRN4 is sufficient to extend circadian rhythms as part of this response, with PRR7 and LWD1 identified as transcripts that are post-transcriptionally regulated to delay circadian progression.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pressão Osmótica , Ritmo Circadiano/genética , Relógios Circadianos/genética , Estabilidade de RNA , Regulação da Expressão Gênica de Plantas
2.
Plant Physiol ; 185(1): 228-239, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33631808

RESUMO

Optimal plant growth performance requires that the presence and action of growth signals, such as gibberellins (GAs), are coordinated with the availability of photo-assimilates. Here, we studied the links between GA biosynthesis and carbon availability, and the subsequent effects on growth. We established that carbon availability, light and dark cues, and the circadian clock ensure the timing and magnitude of GA biosynthesis and that disruption of these factors results in reduced GA levels and expression of downstream genes. Carbon-dependent nighttime induction of gibberellin 3-beta-dioxygenase 1 (GA3ox1) was severely hampered when preceded by reduced daytime light availability, leading specifically to reduced bioactive GA4 levels, and coinciding with a decline in leaf expansion rate during the night. We attributed this decline in leaf expansion mostly to reduced photo-assimilates. However, plants in which GA limitation was alleviated had significantly improved leaf expansion, demonstrating the relevance of GAs in growth control under varying carbon availability. Carbon-dependent expression of upstream GA biosynthesis genes (Kaurene synthase and gibberellin 20 oxidase 1, GA20ox1) was not translated into metabolite changes within this short timeframe. We propose a model in which the extent of nighttime biosynthesis of bioactive GA4 by GA3ox1 is determined by nighttime consumption of starch reserves, thus providing day-to-day adjustments of GA responses.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Carbono/metabolismo , Relógios Circadianos/fisiologia , Giberelinas/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Adaptação Ocular/fisiologia , Adaptação à Escuridão/fisiologia , Variação Genética , Genótipo , Desenvolvimento Vegetal/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...