Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35408144

RESUMO

Autonomous vehicles offer various advantages to both vehicle owners and automobile companies. However, despite the advantages, there are various risks associated with these vehicles. These vehicles interact with each other by forming a vehicular network, also known as VANET, in a centralized manner. This centralized network is vulnerable to cyber-attacks which can cause data loss, resulting in road accidents. Thus, to prevent the vehicular network from being attacked and to prevent the privacy of the data, key management is used. However, key management alone over a centralized network is not effective in ensuring data integrity in a vehicular network. To resolve this issue, various studies have introduced a blockchain-based approach and enabled key management over a decentralized network. This technique is also found effective in ensuring the privacy of all the stakeholders involved in a vehicular network. Furthermore, a blockchain-based key management system can also help in storing a large amount of data over a distributed network, which can encourage a faster exchange of information between vehicles in a network. However, there are certain limitations of blockchain technology that may affect the efficient working of autonomous vehicles. Most of the existing blockchain-based systems are implemented over Ethereum or Bitcoin. The transaction-processing capability of these blockchains is in the range of 5 to 20 transactions per second, whereas hashgraphs are capable of processing thousands of transactions per second as the data are processed exponentially. Furthermore, a hashgraph prevents the user from altering the order of the transactions being processed, and they do not need high computational powers to operate, which may help in reducing the overall cost of the system. Due to the advantages offered by a hashgraph, an advanced key management framework based on a hashgraph for secure communication between the vehicles is suggested in this paper. The framework is developed using the concept of Leaving of Vehicles based on a Logical Key Hierarchy (LKH) and Batch Rekeying. The system is tested and compared with other closely related systems on the basis of the transaction compilation time and change in traffic rates.


Assuntos
Veículos Autônomos , Blockchain , Privacidade , Tecnologia
2.
J Healthc Eng ; 2021: 6668985, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34326978

RESUMO

Early diagnosis of pandemic diseases such as COVID-19 can prove beneficial in dealing with difficult situations and helping radiologists and other experts manage staffing more effectively. The application of deep learning techniques for genetics, microscopy, and drug discovery has created a global impact. It can enhance and speed up the process of medical research and development of vaccines, which is required for pandemics such as COVID-19. However, current drugs such as remdesivir and clinical trials of other chemical compounds have not shown many impressive results. Therefore, it can take more time to provide effective treatment or drugs. In this paper, a deep learning approach based on logistic regression, SVM, Random Forest, and QSAR modeling is suggested. QSAR modeling is done to find the drug targets with protein interaction along with the calculation of binding affinities. Then deep learning models were used for training the molecular descriptor dataset for the robust discovery of drugs and feature extraction for combating COVID-19. Results have shown more significant binding affinities (greater than -18) for many molecules that can be used to block the multiplication of SARS-CoV-2, responsible for COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Simulação por Computador , Descoberta de Drogas/métodos , SARS-CoV-2/efeitos dos fármacos , Algoritmos , Aprendizado Profundo , Humanos , Pandemias , Preparações Farmacêuticas
3.
Sensors (Basel) ; 21(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33920008

RESUMO

Long-range radio (LoRa) communication is a widespread communication protocol that offers long range transmission and low data rates with minimum power consumption. In the context of solid waste management, only a low amount of data needs to be sent to the remote server. With this advantage, we proposed architecture for designing and developing a customized sensor node and gateway based on LoRa technology for realizing the filling level of the bins with minimal energy consumption. We evaluated the energy consumption of the proposed architecture by simulating it on the Framework for LoRa (FLoRa) simulation by varying distinct fundamental parameters of LoRa communication. This paper also provides the distinct evaluation metrics of the the long-range data rate, time on-air (ToA), LoRa sensitivity, link budget, and battery life of sensor node. Finally, the paper concludes with a real-time experimental setup, where we can receive the sensor data on the cloud server with a customized sensor node and gateway.

4.
Sensors (Basel) ; 20(11)2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32531911

RESUMO

The Internet of things (IoT), the Internet of vehicles, and blockchain technology have become very popular these days because of their versatility. Road traffic, which is increasing day by day, is causing more and more deaths worldwide. The world needs a product that would reduce the number of road accidents. This paper suggests combining IoT and blockchain technology to mitigate road hazards. The new intelligent transportation system technologies and the subsequent emergence of 5G technologies will be a blessing, delivering the necessary speed to ensure both safety and quality of service (QoS). Hashgraph technology, a distributed ledger technology is used to create communication networks between the different vehicles and other relevant parameters. Scheduling the requests according to the priorities for ensuring better QoS quotient can be effectively done using hashgraph. We demonstrated how the hashgraph outstrips other equivalents platforms. The proposed model was simulated using OMNeT++ with proper design and network description files. A hardware implementation of the proposed model was also done. Messages were transferred between the vehicles and prioritized using a hashgraph. This paper proposes an effective model in reducing the accidents in terms of parameters like speed, security, stability, and fairness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...