Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37601485

RESUMO

Cervical cancer remains a significant global health challenge, and there is a need for innovative drug delivery systems to improve the efficacy of anticancer drugs. In this study, we developed and evaluated boronated chitosan/alginate nanoparticles (BCHIALG NPs) as a localized mucoadhesive drug delivery system for cervical cancer. Boronated chitosan (BCHI) was synthesized by incorporating 4-carboxyphenylboronic acid onto chitosan (CHI), and boronated chitosan/alginate nanoparticles (BCHIALG NPs) with varying polymer ratios were prepared using an ionic gelation method. The physical properties, drug loading capacity/encapsulation efficiency, mucoadhesive properties, and in vitro drug release profile of the nanoparticles were evaluated. The BCHIALG NPs exhibited a size of less than 390 nm and demonstrated high drug encapsulation efficiency (98.1 - 99.8%) and loading capacity (326.9 - 332.7 µg/mg). Remarkably, the BCHIALG NPs containing 0.03% boronated chitosan and 0.07% alginate showed superior mucoadhesive capability compared to CHIALG NPs, providing sustained drug release and they showed the most promising results as a transmucosal drug delivery system for hydrophobic drugs like paclitaxel (PTX). To the best of our knowledge, this is the first report investigating BCHIALG NPs for cervical drug delivery. The new mucoadhesive paclitaxel formulation could offer an innovative strategy for improving cervical cancer treatment.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22280574

RESUMO

Successful COVID-19 prevention requires additional measures beyond vaccination, social distancing, and masking. A nasal spray solution containing human IgG1 antibodies against SARS-CoV-2 (COVITRAP) was developed to strengthen other COVID-19 preventive arsenals. Here, we evaluated its pseudovirus neutralization potencies, preclinical and clinical safety profiles, and intranasal SARS-CoV-2 inhibitory effects in healthy volunteers (NCT05358873). COVITRAP exhibited broadly potent neutralizing activities against SARS-CoV-2 with PVNT50 values ranging from 0.0035 to 3.1997 g/ml for the following variants of concern (ranked from lowest to highest): Alpha, Beta, Gamma, Ancestral, Delta, Omicron BA.1, Omicron BA.2, Omicron BA.4/5, and Omicron BA.2.75. It demonstrated satisfactory preclinical safety profiles based on evaluations of in vitro cytotoxicity, skin sensitization, intracutaneous reactivity, and systemic toxicity. Its intranasal administration in rats did not yield any detected circulatory levels of the human IgG1 anti-SARS-CoV-2 antibodies at any time point during the 120 hours of follow-up. A double-blind, randomized, placebo-controlled trial (RCT) was conducted on 36 healthy volunteers who received either COVITRAP or a normal saline nasal spray at a 3:1 ratio. Safety of the thrice-daily intranasal administration for 7 days was assessed using nasal sinuscopy, adverse event recording, and self-reporting questionnaires. COVITRAP was well tolerated, with no significant adverse effects in healthy volunteers for the entire 14 days of the study. The intranasal SARS-CoV-2 inhibitory effects of COVITRAP were evaluated in nasal fluids taken from volunteers pre- and post-administration using a SARS-CoV-2 surrogate virus neutralization test. SARS-CoV-2 inhibitory effects in nasal fluids collected immediately or six hours after COVITRAP application were significantly increased from baseline for all three variants tested, including Ancestral, Delta, and Omicron BA.2. In conclusion, COVITRAP was safe for intranasal use in humans to provide SARS-CoV-2 inhibitory effects in nasal fluids that lasted at least six hours. Therefore, COVITRAP can be considered an integral instrument for COVID-19 prevention.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...